Lesson 8

Multipliquemos 2 números de dos dígitos

Warm-up: Conversación numérica: Grupos extra (10 minutes)

Narrative

This Number Talk encourages students to use multiples of 10 to mentally multiply two-digit numbers that are close to multiples of 10. Students can use place value reasoning and the distributive property of multiplication over addition or subtraction to find the value of the products. The work here prompts students to think flexibly about how numbers can be decomposed strategically when multiplying.

Launch

  • Display one expression.
  • “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
  • 1 minute: quiet think time

Activity

  • Record answers and strategy. 
  • Keep expressions and work displayed.
  • Repeat with each expression.

Student Facing

Encuentra mentalmente el valor de cada expresión. 

  • \(20 \times 60\)
  • \(21 \times 60\)
  • \(20 \times 62\)
  • \(19 \times 60\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Cómo nos puede ayudar \(20 \times 60\) a encontrar el valor de \(19 \times 60\)?” // “How can \(20 \times 60\) help us find the value of \(19 \times 60\)?” (\(19 \times 60\) is one group of 60 less than \(20 \times 60\), so we can subtract 60 from \(20 \times 60\).)

Activity 1: Dos por dos (20 minutes)

Narrative

In this activity, students use rectangular diagrams and similar reasoning as in earlier activities to represent the multiplication of 2 two-digit numbers. They analyze a progression of diagrams, starting with those that represent multiplication of two-digit and one-digit numbers (18 and 6), a two-digit number and a ten (18 and 10), and then 2 two-digit numbers (18 and 16).

Students may decompose factors in different ways. For example, those who are familiar with multiples of 25 may find it intuitive to decompose \(25 \times 46\) as \(25 \times 40\) and \(25 \times 6\), rather than decomposing 25 into \(20 + 5\).

MLR8 Discussion Supports. Pair gestures with verbal directions to clarify the meaning of any unfamiliar terms such as partial product.
Advances: Listening, Representing
Action and Expression: Develop Expression and Communication. Give students access to base-ten blocks. If students use the blocks for the last question, ask them to also draw a diagram that represents their work with the blocks.
Supports accessibility for: Conceptual Processing, Visual-Spatial Processing

Launch

  • Display the three diagrams in the activity.
  • “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?”
  • 1 minute: quiet think time
  • 1 minute: partner discussion

Activity

  • “En silencio, trabajen unos minutos en el primer problema. Luego, compartan con su compañero cómo pensaron” // “Take a few quiet minutes to work on the first problem. Then, share your thinking with your partner.”
  • 3 minutes: independent work time
  • 3 minutes: partner discussion
  • Invite students to share their responses: “¿Qué expresiones de multiplicación pueden estar representadas por los diagramas?” // “What multiplication expression can be represented by each diagram?”
  • “Completen el resto de la actividad” // “Complete the rest of the activity.”
  • 3 minutes: independent or partner work time
  • Monitor for students who decompose both factors into tens and ones and those who choose to keep one of the factors intact.

Student Facing

  1. En cada caso, escribe una expresión de multiplicación que pueda estar representada por el diagrama. Luego, encuentra el valor de la expresión. Usa ecuaciones para mostrar o explicar cómo razonaste.

    1. Diagram, rectangle partitioned vertically into 2 rectangles. Left rectangle, vertical side 6, horizontal side 10. Right rectangle, horizontal side 8.
    2. Diagram, rectangle partitioned vertically into 2 rectangles. Left rectangle, vertical side 10, horizontal side 10. Right rectangle, horizontal side 8.
    3. Diagram, rectangle partitioned vertically and horizontally into 4 rectangles.
  2. ¿En qué se parecen los diagramas? ¿En qué son diferentes? Discute con tu compañero.
  3. Usa un diagrama para encontrar cada producto.

    1. \(13 \times 21\)
    2. \(25 \times 46\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Select two students to share their diagrams, solutions, and reasoning for the last problem. 
  • “¿Cómo descompusieron los factores y el diagrama?” // “How did you decompose the factors and the diagram?” (I decomposed the 13 into 10 and 3 and the 21 into 20 and 1.) 
  • “¿Qué expresiones podríamos escribir para mostrar el producto parcial que está representado por cada parte del diagrama?” // “What expression could we write to show the partial product represented by each part of the diagram?” 
  • “¿Cómo nos ayudan estos productos parciales a encontrar el valor de \(13 \times 21\)?” // “How do these partial products help us find the value of \(13 \times 21\)?” (Adding them gives us the value of \(13 \times 21\): \(200 + 10 + 3 + 60 = 273\))

Activity 2: Descompongamos de acuerdo al valor posicional (15 minutes)

Narrative

In this activity, students analyze two ways of decomposing a factor: by place value and not by place value. As they write the corresponding partial products, they see more clearly why it is helpful to decompose each of the factors by place value (MP7). Students may notice that when the factors are decomposed by place value, they end up finding multiples of 10 and multiplying a number by single-digit factors—both of which they can do with some degree of fluency.

This activity uses MLR5 Co-craft Questions. Advances: writing, reading, representing

Launch

  • Groups of 2

Activity

MLR5 Co-Craft Questions
  • Display only the two diagrams, without revealing the opening sentence or the question(s). 
  • “Escriban una lista de preguntas matemáticas que se pueden hacer sobre esta situación” // “Write a list of mathematical questions that could be asked about this situation.”
  • 2 minutes: independent work time
  • 2 minutes: partner discussion
  • Invite several students to share one question with the class. Record responses.
  • “¿En qué se parecen estas preguntas? ¿En qué son diferentes?” // “What do these questions have in common? How are they different?”
  • Reveal the task (students open books), and invite additional connections. 
  • “Piensen en silencio en la primera pregunta durante dos minutos. Luego, compartan con su compañero cómo pensaron” // “Take two quiet minutes to think about the first question. Then, share your thinking with your partner.”
  • 2 minutes: independent work time on the first problem
  • 1 minute: partner discussion
  • “Ahora completen el resto de la actividad” // “Now complete the rest of the activity.”
  • Monitor for students who: 
    • decompose the side lengths of their diagrams by place value 
    • write expressions to show the sum of the partial products (This is not required, but it is helpful for the synthesis.)
  • If extra time is available, add more two-digit by two-digit expressions to the last problem:
    • \(83 \times 39\)
    • \(64 \times 92\)    

Student Facing

Estos diagramas se pueden usar para encontrar el valor de \(49 \times 57\).

Diagrama ADiagram, rectangle partitioned vertically and horizontally into 4 rectangles.
Diagrama BDiagram, rectangle partitioned vertically and horizontally into 4 rectangles
  1. ¿Cuál diagrama es más útil para encontrar el valor de \(49\times57\)? ¿Por qué?

  2. Usa un diagrama para encontrar cada producto.

    1. \(49 \times 57\)
    2. \(29 \times 55\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Cómo se pueden usar ambos diagramas para encontrar el valor de \(49 \times 57\)?” // “How can both diagrams be used to find the value of \(49 \times 57\)?” (We can partition each side of a rectangle in many ways without changing the total side lengths.)
  • “¿Por qué fue más útil la descomposición del diagrama A que la del diagrama B?” // “Why was the partitioning in diagram A more helpful than in diagram B?” (\(40 \times 50\) is easier than \(37 \times 50\) or \(12 \times 50\) to find mentally, because we are multiplying multiples of 10.)

Lesson Synthesis

Lesson Synthesis

“Hoy aprendimos a representar la multiplicación de 2 números de dos dígitos usando un diagrama rectangular. Aprendimos que podemos descomponer cada factor de acuerdo al valor posicional y mostrar las decenas y las unidades en cada lado del rectángulo. Nos dimos cuenta de que hacer esto nos puede ayudar a multiplicar de manera eficiente” // “Today we learned how to represent the multiplication of 2 two-digit numbers using a rectangular diagram. We learned that we can decompose each factor by place value and show the tens and ones on each side of the rectangle, and that doing this can help us to multiply efficiently.”

Select students with different strategies to share their reasoning for finding the value of \(29 \times 55\) (the last problem of the last activity). 

Display the following diagram as an example of how decomposing can result in facts that are not helpful when multiplying to support using place value to decompose.

diagram

“¿Por qué podría ser más útil descomponer 55 en \(50 + 5\) que en \(42 + 13\)?” // “Why might it be more helpful to decompose 55 into \(50 + 5\) than into \(42 + 13\)?” (Multiplying by multiples of 10 and by single-digit numbers is easier than multiplying numbers like 42 and 9.)

Cool-down: ¿Cuál es el producto? (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.