Lesson 1
Patrones que crecen
Warm-up: Observa y pregúntate: Colecciones de círculos (10 minutes)
Narrative
This warm-up prompts students to analyze a visual pattern and the mathematics involved in how each step in the pattern changes. They also familiarize themselves with a kind of pattern they will investigate closely later in the lesson.
Launch
- Display the image.
- “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?”
- 1 minute: quiet think time
Activity
- “Discutan con su compañero lo que pensaron” // “Discuss your thinking with your partner.”
- 1 minute: partner discussion
- Share and record responses.
Student Facing
¿Qué observas? ¿Qué te preguntas?
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “¿Qué podría ir en el tercer paso? ¿Por qué?” // “What could go in the third step? Why is that?” (Three rows of 3 circles. The step number seems to correspond to how many rows of 3 there are.)
- “¿Este patrón sigue alguna regla?” // “Is there a rule this pattern follows?” (Add a row of 3 circles each time.)
- “Si seguimos la regla, ¿cómo se verá el quinto paso?” // “If we follow the rule, what will the fifth step look like?” (Five rows of 3 circles)
Activity 1: Patrones con tapas de botella (15 minutes)
Narrative
This activity invites students to look for structure in visual diagrams and describe possible patterns in them (MP7). Because only the first two steps of the pattern are given, students could draw different conclusions about the rule the pattern follows and the subsequent steps. They may say, for instance, that the number of caps are increasing by 5 each time, doubling each time, or increasing by 5 the first time, by 6 the second time, and so on. In the last question, students represent the visual patterns numerically and begin to notice patterns in the numbers as well.
Students may choose to describe the pattern they see using expressions or in terms of operations but are not expected to do so. They may describe their observations using words, numbers, or diagrams.
Advances: Conversing, Reading
Supports accessibility for: Organization, Attention, Fine Motor Skills
Launch
- Groups of 2–4
- “¿Qué patrones observan en su barrio, en su casa o camino a la escuela?” // “What are some patterns you see around your neighborhood, at home or on the way to school?”
- 30 seconds: quiet think time
- 1 minute: partner discussion
Activity
- “En silencio, observen el patrón de Han y resuelvan los dos primeros problemas” // “Take a few quiet minutes to look at Han’s pattern and answer the first two problems.”
- “Compartan con su grupo cómo pensaron antes de pasar al último problema” // “Share your thinking with your group before continuing to the last problem.”
- 5 minutes: independent work time
- Monitor for the different ideas students have about the rule that Han might have in mind.
- Identify students with different ideas and ways of representing or describing their ideas, to share during the activity synthesis.
Student Facing
Han organiza tapas de botella formando un patrón. Estos son los dos primeros pasos.
-
- ¿Cuál puede ser la regla en la que Han está pensando? ¿Cómo crees que el patrón podría continuar?
- Describe o dibuja los 2 pasos que siguen.
- ¿Hay alguna otra regla que sea posible?
- Para cada regla que encuentres, escribe los números que representan la cantidad de tapas que hay en los pasos 1 al 6.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Advancing Student Thinking
If students find only one rule for the pattern, consider asking:
- “¿Qué sabes sobre la relación que hay entre 5 y 10? Piensa en todas las maneras que puedas en las que están relacionados” // “What do you know about the relationship between 5 and 10? Think of as many ways as you can about how they are related.”
- “¿Cómo pueden ayudarte esas relaciones a encontrar otra regla?” // “How can those relationships help you find another rule?”
Activity Synthesis
- Select previously identified students to share their responses, including the numbers they wrote to represent their visual patterns.
- Display all of the numerical patterns students generated.
-
“¿Cómo podemos saber cuál es la regla a partir de cada patrón numérico?” // “How can we tell from each numerical pattern what the rule is?” (We look at how the numbers change. They might:
- increase or decrease by the same amount each time
- be multiplied by the same factor each time
- change by 1 more than the previous change.)
- “Además de la regla, ¿qué otras características interesantes observan sobre los patrones de números?” // “Besides the rule, what other interesting features do you notice about each number pattern?” (Alternating odd and even numbers, multiples of 5 and 10)
Activity 2: Cada vez más alta (20 minutes)
Narrative
In this activity, students analyze a new visual pattern, describe its features, and make predictions about what they would see if the pattern continues (MP7). As in the first activity, students may show their reasoning using words, numbers, expressions, or equations. Unlike in the first activity, some elements in the steps remain constant, and students are given the rule the pattern follows.
Monitor for the ways students reason about the number of square blocks (partner A) or the number of all blocks (partner B) in the tenth step of the pattern. For the square blocks, students may:
- Start with only the number of square blocks in the legs of the giraffe (4) and reason:
- We can skip-count by 2 ten times, starting from 4.
- At each step, 2 square blocks are added to the 4 for the neck, so at the tenth step, there are 10 times 2, or 20, more square blocks.
- \(4 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2\)
- \(4 + (10 \times 2)\)
- Start with the number of square blocks in the first step (6) and reason:
- We can add 2 to 6 nine times.
- \(6 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2\)
- \(6 + (9 \times 2)\)
- Start with the number in the fifth step (14) and reason:
- We can add 2 to 14 five times.
- \(14 + 2 + 2 + 2 + 2 + 2\)
- \(14 + (5 \times 2)\)
In the activity synthesis, highlight the connections across the different representations (words, addition expressions, multiplication expressions) used to describe and extend the pattern.
This activity uses MLR7 Compare and Connect. Advances: representing, conversing
Required Materials
Materials to Gather
Required Preparation
- Consider preparing a set of pattern blocks for building the first two or three steps of the giraffe pattern. The set should include 6 hexagons, 6 triangles, 3 trapezoids, and 24 squares.
Launch
- Groups of 2
- “Trabajen con su compañero en esta actividad. Una persona va a ser el compañero A y la otra persona el compañero B” // “Work with your partner on this activity. One person should be partner A and the other person partner B.”
- Give access to pattern blocks.
Activity
- “Trabajen unos minutos en silencio en su parte del problema. Después, compartan sus respuestas con su compañero” // “Take a few quiet minutes to work on your part. Afterwards, share your responses with your partner.”
- 6–7 minutes: independent work time
- “Cuando sea su turno de compartir, explíquenle claramente a su compañero cómo pensaron” // “When it’s your turn to share, explain your thinking so that it is clear to your partner.”
- “Cuando sea su turno de escuchar, presten mucha atención a la explicación de su compañero. Si no están de acuerdo en alguna afirmación o no les queda clara, discutan o hagan preguntas” // “When it’s your turn to listen, pay close attention to your partner’s explanation. If you disagree or are unclear about a statement they make, ask questions or discuss the disagreement.”
- 4–5 minutes: partner discussion
- Identify students who reason differently about the number of blocks in the tenth step (as noted in the Activity Narrative) and about whether 25 could be a number in each pattern.
- Consider asking them to create a visual display that shows their reasoning and include details to help others understand their thinking.
Student Facing
Jada usó fichas geométricas para hacer jirafas. Estos son los dos primeros pasos. Ella siguió agregando 2 fichas cuadradas en cada paso nuevo.
Compañero A:
-
Haz una lista del número de fichas cuadradas que hay en cada uno de los primeros cinco pasos. Escribe dos observaciones sobre los números.
-
Sin dibujar la jirafa, predice cuántas fichas cuadradas habrá en total en el décimo paso. Explica o muestra cómo razonaste.
- ¿En algún paso habrá 25 fichas cuadradas en total? Explica o muestra cómo razonaste.
Compañero B:
-
Haz una lista del número total de fichas que hay en cada uno de los cinco primeros pasos. Escribe dos observaciones sobre los números.
-
Predice cuántas fichas habrá en total en el décimo paso. Explica o muestra cómo razonaste.
- ¿En algún paso habrá 25 fichas en total? Explica o muestra cómo razonaste.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Select previously identified students to share their visual displays or otherwise share their responses and reasoning to the second question (about the number of blocks in the tenth step).
- Sequence students’ explanations to go from the more concrete (using words or lists of numbers) to the more abstract (using expressions and operations).
MLR7 Compare and Connect
- Keep the visual displays visible or record students’ reasoning for all to see.
- “¿En qué se parecen y en qué son diferentes las estrategias que se compartieron?” // “What is the same and what is different between the different strategies shared?”
- 2 minutes: partner discussion
- Highlight the similarities and differences across the various solution paths and representations used to reason about the same question. For example:
- Alike: The pattern can be described by using skip-counting, words, addition, or multiplication. The pattern was expressed in terms of an increase by a fixed amount each time.
- Different: We could use different numbers in the sequence as a starting point for figuring out the 10th term or to see if 25 is a value in the sequence.
Lesson Synthesis
Lesson Synthesis
“Hoy estudiamos varios patrones. Cada uno de ellos muestra pasos que cambian de acuerdo a una regla” // “Today we looked at several patterns. Each of them shows steps that change according to a rule.”
“¿Cuáles son algunas de las maneras en las que describimos y continuamos los patrones que vimos?” // “What are some ways we used to describe and extend the patterns we saw?” (Using words, numbers, and expressions.)
Display:
5, 10, 15, 20, 25, 30
“Estos números representan un patrón posible para las tapas de botella de Han de la primera actividad” // “These numbers represent a possible pattern for Han’s bottle caps in the first activity.”
“¿Cómo podríamos encontrar el número de tapas que habrá en el octavo paso?” // “How might we find the number of caps in the eighth step?” (Add 5 to 30 two times, \(30 + 5 + 5\), or \(30 + (2 \times 5)\). Multiply 5 by 8 or \(8 \times 5\).)
“¿Puede haber 72 tapas de botella en algún paso del patrón? ¿Por qué sí o por qué no?” // “Could 72 be a number of bottle caps in a step in the pattern? Why or why not?” (No, because the numbers in the patterns are all multiples of 5, and 72 is not a multiple of 5.)
Cool-down: El patrón que hay en las casas de Andre (5 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.