Lesson 11
Productos parciales y el algoritmo estándar
Warm-up: Conversación numérica: El valor de los dígitos (10 minutes)
Narrative
This Number Talk routine encourages students to think about decomposing factors by place value to multiply multi-digit numbers by one-digit numbers. As students look for and make use of structure, they may notice that multiplying the ones place has a result in the pattern of 5, 10, and 15. Students may use the partial products equations to multiply.
This routine helps students pay attention to the value of the digits when multiplying. This is important for setting up the conversation about the standard algorithm, in which students will find partial products mentally and use what they know about the value of the digits to condense the number of steps to multiply by multi-digit numbers.
Launch
- Display one expression.
- “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
- 1 minute: quiet think time
Activity
- Record answers and strategy.
- Keep expression and work displayed.
- Repeat with each expression.
Student Facing
Encuentra mentalmente el valor de cada expresión.
- \(5 \times 101 \)
- \(5 \times 102 \)
- \(5 \times 203 \)
- \(5 \times 404 \)
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “¿Qué conexiones o relaciones observan entre las expresiones?” // “What connections or relationships do you see between each expression?” (Each problem involves one more group of 5 or sets or 100 more.)
Activity 1: Dos algoritmos para multiplicar (20 minutes)
Narrative
This activity introduces students to the standard algorithm for multiplication. Students make sense of it by comparing and contrasting it to an algorithm that uses partial products for multiplying three- and four-digit numbers by one-digit numbers where no regrouping is necessary. When they interpret the given student work showing the standard algorithm students construct a viable argument for what Kiran did in his calculation (MP3). They also have an opportunity to make use of the structure they notice to compute the value of other products.
Advances: Speaking, Representing
Launch
- Groups of 2
Activity
- “Traten de entender los algoritmos de Kiran y de Diego. Cuéntenle a su compañero en qué se parecen y en qué son diferentes los algoritmos y cómo creen que Kiran encontró su respuesta” // “Make sense of Kiran and Diego’s algorithms. Talk to your partner about how they are alike and different, and how Kiran might have found his answer.”
- 3 minutes: partner discussion
- Pause for a discussion.
- Invite students to share their conjectures on how Kiran might have reasoned about the product.
- Alternatively, consider displaying a few scenarios and polling students on which one might be closest to their conjecture, if any. For example:
- A: Kiran found \((3 \times 700) + (3 \times 13)\) mentally and wrote down the result of \(2,\!100 + 39\).
- B: Kiran used the same method as Diego but added the 9, 30, and 2,100 mentally, without writing them down.
- C: Kiran drew a diagram and did the computation on another sheet of paper and wrote the result here.
- D: Kiran multiplied the single-digit 3 with each digit in 713 and wrote each partial product in a single line.
- Explain that Kiran had multiplied 3 by each digit in 713, but instead of reasoning about \(3 \times 3\), \(3 \times 10\), and \(3 \times 700\), Kiran reasoned about \(3 \times 3\), \(3 \times 1\), and \(3 \times 7\), while paying attention to the place value of each digit.
- Demonstrate Kiran’s process:
- Because the 3 in 713 means 3 ones, he wrote the result of \(3 \times 3\) or 9 in the ones place.
- Because the 1 means 1 ten, he wrote the result of \(3 \times 1\) in the tens place.
- Because the 7 means 7 hundreds, he wrote the result of \(3 \times 7\) in the hundreds place.
- “Traten de usar el algoritmo de Kiran para encontrar el valor de los últimos dos productos” // “Try using Kiran’s algorithm to find the value of the last two products.”
- 3 minutes: independent work time
- 2 minutes: partner discussion
Student Facing
-
Estos son dos algoritmos para encontrar el valor de \(3 \times 713\).
Discute con tu compañero:
- ¿En qué se parecen los algoritmos de Kiran y de Diego? ¿En qué son diferentes?
- ¿Cómo crees que Kiran obtuvo 2,139 al encontrar el producto?
-
Encuentra el valor de cada producto.
- \(212 \times 4\)
- \(3 \times 4,\!132\)
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Select students to share and explain their calculations of the last two products.
- Consider demonstrating the process of Kiran’s strategy to find \(3 \times 4,\!132\).
- “La estrategia de Kiran se llama el ‘algoritmo estándar de multiplicación’. En la siguiente actividad, vamos a estudiar más a fondo este algoritmo” // “Kiran’s strategy is called the ‘standard algorithm for multiplication.’ We’ll take a closer look at this algorithm in the next activity.”
Activity 2: Comparemos algoritmos (15 minutes)
Narrative
The purpose of this activity is for students to compare the standard algorithm for multiplication and an algorithm that uses partial products. The focus of the synthesis is on the convention used for composing a new unit and how it connects to their work with the standard algorithm for addition.
Supports accessibility for: Conceptual Processing, Social-Emotional Functioning
Launch
- Groups of 2
Activity
- “Trabajen con su compañero en el primer problema” // “Work with your partner on the first problem.”
- 3–4 minutes: partner work time
- Pause for brief discussion. Invite students to share how the two methods are alike and how they are different.
- “¿Por qué en el algoritmo de Kiran hay un 1 escrito encima del 2 que está en la columna de las decenas?” // “In Kiran's algorithm, why is a 1 written in above the 2 in the tens column?” (It represents 1 ten from the number 12. It helps us remember to add it to the tens place because we are doing a lot of calculations in our heads.)
- “¿Dónde hemos visto antes esta notación?” // “Where have we seen this notation before?” (When we add using the standard algorithm, we use this notation to show that we have more than 9 ones, tens or hundreds, and so on, in a given place, we add each group of 10 units to the place value to the left.)
- “Kiran usó el algoritmo estándar de multiplicación. Traten de usarlo para encontrar el valor de \(512 \times 3\)” // “Kiran's used the standard algorithm for multiplication. Try using it to find \(512 \times 3\).”
- 3 minutes: independent work time
- 1–2 minutes: partner discussion
Student Facing
-
Analiza los algoritmos que usaron Diego y Kiran para encontrar el valor de \(4 \times 223\).
- ¿En qué se parecen los algoritmos de Kiran y de Diego? ¿En qué son diferentes?
- ¿Dónde está el 12 en el algoritmo de Kiran?
-
- Trata de usar el algoritmo de Kiran para encontrar el valor de \(512 \times 3\).
- Comprueba tu trabajo usando otro método.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- See lesson synthesis.
Lesson Synthesis
Lesson Synthesis
“Hoy comparamos el algoritmo estándar de multiplicación con un algoritmo en el que se usan productos parciales. Veamos cómo encontraríamos el valor de \(3 \times 512\)” // “Today we compared the standard algorithm for multiplication to an algorithm that uses partial-products. Let’s see how we’d find \(3 \times 512\).”
Display:
“¿Cómo encontrarían el valor del producto?” // “How would you find the value of the product?” (Sample responses:
- I know that 500 x 3 is 1500 and 12 x 3 is 36 and 1500 + 36 = 1,536.
- Three times 2 is 6, so that goes in the ones place. 3 times 1 is 3, so that goes in the tens place. 3 times 5 is 15, so that goes in the thousands and hundreds place.)
Assure students that they are not expected to use a particular method for multi-digit multiplication in grade 4. Explain that they will study this algorithm more in grade 5. Invite them to try to use it to multiply as we continue to work through lessons.
Cool-down: Escoge una forma de multiplicar (5 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.