Lesson 19
División con y sin residuos
Warm-up: Observa y pregúntate: Ecuaciones con centenas (10 minutes)
Narrative
This warm-up prompts students to analyze patterns and look for structure in division equations (MP7), and to reinforce their understanding of factors and multiples.
Launch
- Groups of 2
- Display the equations.
- “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?”
- 1 minute: quiet think time
Activity
- “Discutan con su pareja lo que pensaron” // “Discuss your thinking with your partner.”
- 1 minute: partner discussion
- Share and record responses.
Student Facing
¿Qué observas? ¿Qué te preguntas?
\(\begin{align}100 &= 33 \times 3 + 1\\ \\ 200 &= 66 \times 3 + 2\\ \\ 300 &= 100 \times 3\\ \\ 400 &=133 \times 3 +1\\ \\ 500 &=166 \times 3 +2\\ \\ 600 &= 200 \times 3 \end{align} \)
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “Si continuáramos el patrón hasta 1,000, ¿cómo se verían las ecuaciones?” // “If we continue the pattern through 1,000, what would the equations look like?”
- “En todas las ecuaciones hay una multiplicación por 3, lo que sugiere que podríamos pensar en ellas en términos de una división entre 3” // “In all the equations, there is multiplication by 3, which suggests we could think of them in terms of division by 3.”
- “¿Cómo podríamos interpretar la ecuación \(300 = 100 \times 3\) en términos de una división entre 3?” // “How could we interpret \(300 = 100 \times 3\) in terms of division by 3?” (Dividing 300 by 3 gives 100.)
- “¿Y la ecuación \(600 = 200 \times 3\)?” // “How about \(600 = 200 \times 3\)?” (Dividing 600 by 3 gives 200.)
- “¿Podemos interpretar la ecuación \(100 = 33 \times 3 + 1\) en términos de una división entre 3? ¿Qué nos dice la ecuación?” // “Can we interpret the equation \(100 = 33 \times 3 + 1\) in terms of division by 3? What does it tell us?” (Yes. Dividing 100 by 3 gives 33 and a remainder of 1.)
- “¿Y la ecuación \(500 = 166 \times 3 + 2\)?” // “What about \(500 = 166 \times 3 + 2\)?” (Dividing 500 by 3 gives 166 and a remainder of 2.)
Activity 1: Una pila de cocientes parciales (15 minutes)
Narrative
This activity develops students’ understanding of the vertical method of recording partial quotients and their ability to use it to perform division. One of the quotients here involves a remainder, prompting students to interpret it. Students are reminded that the term “remainder” is used to describe “leftovers” when dividing.
Advances: Conversing, Reading
Launch
- Groups of 2
Activity
- 3 minutes: independent work time on the first 2 problems.
- Pause after problem 2 to discuss students’ responses.
- Display the different ways that students decompose 389 to divide it by 7.
- “La mayoría de los otros cálculos que hemos visto terminan con un 0, pero este termina con un 4. ¿Qué nos dice el 4?” // “Most other calculations we’ve seen so far end with a 0, but this one ends with a 4. What does the 4 tell us?” (We cannot make a group of 7 with 4 leftover. 389 is not a multiple of 7, and there are leftovers.)
- “Cuando dividimos y nos sobra algo, lo llamamos residuo. El residuo es lo que nos sobra después de dividir en grupos iguales” // “When we divide and end up with leftovers we call them remainders, because they represent what is remaining after we divide into equal groups.”
- Display: \(389 = 7 \times 55 + 4\)
- “¿Cómo muestra esta ecuación que \(389 \div 7\) tiene un residuo?” // “How does this equation show that \(389 \div 7\) has a remainder?” (It shows that 389 is not a multiple of 7. It also shows that 7 and 55 make a factor pair for 385, and 389 is 4 more than that.)
- 3 minutes: independent work time on the last 2 problems.
- As students work on the last two problems monitor for students who:
- start with the largest multiple of 3 and 10 within 702 that they can think of to decompose the dividend (690, 600).
- use the fewest steps to find the quotient.
Student Facing
Jada usó cocientes parciales para averiguar cuántos grupos de 7 hay en 389.
Analiza los pasos de Jada en el algoritmo.
-
- Mira los tres números que están encima de 389. ¿Qué representan?
- Mira las tres restas que están debajo de 389. ¿Qué representan?
- ¿De qué otra forma puedes descomponer 389 para dividirlo entre 7?
- ¿389 es un múltiplo de 7? Explica cómo razonaste.
- Utiliza un algoritmo en el que uses cocientes parciales para averiguar cuántos grupos de 3 hay en 702.
- ¿702 es un múltiplo de 3? Explica cómo razonaste.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Display responses that show variation in how students decomposed 702 in problem 3.
- Highlight that there are countless ways of using partial quotients to divide a number, but it may be more efficient to divide larger groups than smaller groups (for example, removing 350 once, as opposed to removing 70 five times. Removing smaller groups is just as valid, however.)
- To help students see the relationship between corresponding partial products and partial quotients, consider illustrating them visually. Some examples:
Activity 2: El trabajo de Andre y el de Elena (10 minutes)
Narrative
In this activity, students apply their understanding of partial quotients and the vertical recording method to divide four-digit numbers. They also identify some errors that are common when finding quotients this way. When students determine where the errors are and correct them, they critique the reasoning of others and construct viable arguments (MP3).
Supports accessibility for: Visual-Spatial Processing, Organization
Launch
- Groups of 2
Activity
- 1 minute: quiet think time for the first question
- Briefly discuss student responses. Highlight that multiples of 5 end with 0 and 5, so 2,316 is not a multiple of 5 and the division will result in a remainder.
- 3 minutes: independent work time for the second question.
- 1–2 minutes: partner discussion
Student Facing
Andre y Elena quieren dividir 2,316 entre 5. Antes de comenzar, Andre dice: “Ya sé que va a haber un residuo”.
- Sin hacer ningún cálculo, decide si estás de acuerdo con Andre. Explica tu razonamiento.
-
Estos son el trabajo de Andre y el trabajo de Elena. Cada estudiante cometió uno o más errores. Identifica los errores de cada estudiante. Después, muestra una forma correcta de hacer el cálculo.
El trabajo de Andre
El trabajo de Elena
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Select students to share their responses to the last question.
- “Mencionen algunas formas en las que podemos revisar nuestras respuestas y evitar los errores de Andre y Elena. Por ejemplo, ¿cómo podemos saber si al dividir 2,316 entre 5 obtenemos un resultado que está más cerca de 100 o más cerca de 400?” // “What are some ways to check our answers and avoid the mistakes Andre and Elena made? For example, how can we tell if dividing 2,316 by 5 gives a result in the 100s or in the 400s?” (We can estimate by multiplying the result by 5: \(5 \times 103\) is a little over 500, and \(5 \times 400\) is 2,000.)
- To reinforce the importance of keeping track of the partial quotients during division, consider annotating a corrected version of Elena's algorithm. Record the product that corresponds to each number being subtracted from the dividend (the 1,500, 500, 300, and 15).
Activity 3: Cálculos incompletos (10 minutes)
Narrative
The purpose of this activity is to reinforce the idea that there are many ways to use partial quotients to divide numbers and for students to see that some strategies are more practical or efficient than others.
Launch
- Groups of 2–4
- “Escojan al menos dos cálculos y complétenlos. Asegúrense de que cada cálculo sea completado por alguien de su grupo” // “Choose at least two calculations to finish. Make sure each calculation is completed by someone in your group.”
Activity
- 3–4 minutes: independent work time
- 2 minutes: group discussion
Student Facing
Estos son cuatro cálculos que se hicieron para encontrar el valor de \(3,\!294 \div 3\), pero todos están incompletos.
Completa al menos dos de los cálculos. Prepárate para explicar por qué los escogiste.
A
B
C
\(\begin{align} 600\div 3&= \phantom{000000}\\ 600\div 3&=\\ 600\div 3&= \\600\div 3&= \\600\div 3&= \\270\div 3&= \end{align}\)
D
\(\begin{align} 3,\!300\div 3&= 1,\!100\\-\hspace{10mm}6\div 3&= \phantom{0000\!}2\\ \overline {\hspace{5mm}\phantom{3,\!294 \div 3}} &\overline{\phantom{0000000000}}\end{align}\)
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “¿En qué se parecen las cuatro estrategias? ¿En qué son diferentes?” // “How are the four strategies alike? How are they different?” (The first three are similar in that they involve partial quotients. The last one involves estimation.)
- “¿Cuál o cuáles estrategias les parecen fáciles de entender?, ¿difíciles de entender?” // “Which strategy or strategies do you find easy to follow? Hard to follow?”
- “¿Cuál estrategia parece ser la más eficiente?, ¿la menos eficiente?” // “Which strategy seems the most efficient? The least efficient?” (Calculations B and C seem lengthy and could be shortened by using larger multiples of 3. The last seems most efficient.)
Lesson Synthesis
Lesson Synthesis
“Hoy vimos distintas formas de dividir números de varios dígitos entre divisores de un dígito. Al resolver algunas divisiones hubo un residuo y al resolver otras no hubo residuo” // “Today we looked at different ways to divide multi-digit numbers by one-digit divisors. Some divisions result in a number with a remainder and others result in no remainders.”
“¿Siempre podemos saber si va a haber un residuo?” // “Can we always tell if there will be a remainder?” (No, not always, but sometimes we can.)
“¿Cómo, a veces, podemos saber que va a haber un residuo?” // “How can we sometimes tell that there will be a remainder?” (We can use what we know about the multiples of a number. For example, all multiples of 2, 4, 6, and 8 have an even number for the last digit. All multiples of 5 end in 5 or in 0.)
“Algunas formas de dividir son bastante largas. ¿Qué formas hay de dividir de manera eficiente?” // “Some ways to divide are pretty lengthy. What are some ways to divide efficiently?” (Dividing larger portions of the dividend, or taking larger multiples of the divisor.)
“En la última actividad, vimos que estimar es una manera muy eficiente de encontrar un cociente. ¿Cómo podríamos usar una estimación para encontrar el valor de \(5,\!970 \div 3\) o de \(6,\!986 \div 7\)?” // “In the last activity, we saw estimating as a rather efficient way to find a quotient. How might we use estimation to find \(5,\!970 \div 3\) or \(6,\!986 \div 7\)?” (Notice that:
- \(5,\!970\) is 30 less than \(6,\!000\), which is \(3 \times 2,\!000\). Thirty is \(3 \times 10\), so \(5,\!970\) is \(3 \times 1,\!990\).
- \(6,\!986\) is close to \(7,\!000\), which is \(7 \times 1,\!000\), and \(6,\!986\) is 14 or \(7 \times 2\) less than \(7,\!000\). So \(6,\!986\) is \(7 \times 998\).)
“¿Cómo podemos revisar el resultado de nuestra división para asegurarnos de que no está errado?” // “How can we check the result of our division to make sure it’s not off?” (We can multiply the result by the divisor, adding the remainder if there is one, and see if it gives the dividend.)
Cool-down: Encuentra un cociente (5 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.