Lesson 6

Multipliquemos números de dos dígitos por números de un dígito

Warm-up: Observa y pregúntate: Con cuadrícula y sin cuadrícula (10 minutes)

Narrative

The purpose of this warm-up is to elicit students’ prior knowledge of area and the idea that a rectangle can be decomposed into smaller rectangular regions. Students look at 4 different area diagrams they used in grade 3. The reasoning here will be useful when students use diagrams to multiply two- and one-digit numbers in a later activity. While students may notice and wonder many things about the number of units within the area of the gridded region, focus on the connections between the diagrams with a grid and those without.

Launch

  • Groups of 2
  • Display the image.
  • “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?”
  • 1 minute: quiet think time

Activity

  • “Discutan con su compañero lo que pensaron” // “Discuss your thinking with your partner.”
  • 1 minute: partner discussion
  • Share and record responses.

Student Facing

¿Qué observas? ¿Qué te preguntas?

diagram, rectangle. Partitioned into 4 rows of 13 of the same size squares.

diagram, rectangle. Partitioned into 4 rows of 13 of the same size squares, 40 squares shaded.
Rectangle. Horizontal side, 13. Vertical side, 4.
Diagram, rectangle partitioned vertically into 2 rectangles. Left rectangle, vertical side, 4, horizontal side, 10. Right rectangle, horizontal side, 3.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Qué saben sobre el 13 y el 4 del primer rectángulo que no tiene cuadrícula?” // “What do you know about the 13 and 4 in the first ungridded rectangle?” (They are side lengths. They correspond to the number of squares across and the number of squares down in the first rectangle.)
  • “¿Qué saben sobre el 10, el 3 y el 4 del segundo rectángulo que no tiene cuadrícula?” // “What about the 10, 3, and 4 in the second ungridded rectangle?” (The 10 and 3 are numbers that add up to 13. The 4 is the length of the shorter side.)
  • “¿Cómo se relacionan los cuatro diagramas? Mencionen todas las conexiones que vean” // “How are the four diagrams related? Name as many connections as you see.” (Sample responses:
    • They all represent the same rectangle. They have the same side lengths and the same area.
    • The first two show the number of square units that fit in the rectangle. The last two don’t show it but we can tell by multiplying the side lengths.
    • The shaded portion in the second gridded rectangles shows the \(4 \times 10\) portion in the fourth rectangle.)
  • If no students mentioned the area of the rectangles in their analysis, ask: “¿Cómo podríamos encontrar el área de los rectángulos?” // “How might we find the area of the rectangles?” (For the gridded rectangles, we can count the unit squares or multiply the number of units across and down. For the other two, we can multiply the side lengths.)

Activity 1: Los diagramas de Tyler (20 minutes)

Narrative

This activity prompts students to make sense of base-ten diagrams for representing multiplication. The representation supports students in grouping tens and ones and encourages them to use place value understanding and to apply the distributive property (MP7).

This activity is an opportunity for students to build conceptual understanding of partial products in a more concrete way. In the next activity, students will notice that working with these drawings can be cumbersome and transition to using rectangular diagrams, which are more abstract.

Launch

  • Groups of 3–4

Activity

  • 5 minutes: independent work time on the first problem
  • 2–3 minutes: partner discussion
  • 3–4 minutes: independent work time on the second problem
  • Monitor for students who use different methods to find the value of \(4 \times 36\) in the first problem.

Student Facing

  1. Tyler usa este diagrama en base diez para encontrar el valor de \(4 \times 36\).

    base ten diagram. 4 rows of 3 tens and 6 ones.
    1. ¿Cómo se ve el 36 en el diagrama de Tyler?
    2. ¿Cómo se ve el 4 en el diagrama de Tyler?
    3. ¿Cuál es el valor de \(4 \times 36\)?
  2. Tyler hizo este diagrama para encontrar el valor de \(9 \times 18\).

    Explica o muestra cómo le ayuda su diagrama a encontrar el valor de \(9 \times 18\).

    base ten diagrams. 9 tens. 9 rows of 8 ones.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Select 2 students who organized the diagram in the first problem in different ways and then compare to what Tyler did.
  • Invite selected students to share their method for finding the value of \(4 \times 36\).
  • “¿En qué se parecen estos métodos? ¿En qué son diferentes?” // “How are these methods the same? How are they different?”
  • “¿En qué se parecen estos métodos a lo que hizo Tyler para encontrar el valor de \(9 \times 18\)? ¿En qué se diferencian?” // “How are these methods like what Tyler did to find the value of \(9 \times 18\)? How are they different?”

Activity 2: Dos tipos de diagramas (15 minutes)

Narrative

This activity continues to encourage place value reasoning for finding the product of a two-digit factor and a one-digit factor.

Students make sense of two representations that show the two-digit factor decomposed by place value: a base-ten diagram and a rectangle. The latter looks like an area diagram that students have used in grade 3, where the side lengths of a rectangle represents two factors. As the factors become larger, however, it becomes necessary to draw rectangles whose side lengths are not proportional. When rectangles no longer accurately represent area, the term “area diagrams” is not used. Instead, “rectangular diagrams” is used in teacher materials and “diagrams” in student materials.

Students then choose a representation to use to find products and write corresponding expressions. In the synthesis, they learn that the results of multiplying a part of one factor by the other factor can be called “partial products.” In future lessons, students will use rectangular diagrams to represent multiplication of larger numbers.

MLR1 Stronger and Clearer Each Time. Synthesis: Before the whole-class discussion, give students time to meet with 2–3 partners to share and get feedback on their response to which method they prefer when multiplying 6 by 53. Invite listeners to ask questions, to press for details, and to suggest mathematical language. Give students 2–3 minutes to revise their written explanation based on the feedback they receive.
Advances: Writing, Speaking, Listening
Engagement: Provide Access by Recruiting Interest. Optimize meaning and value. Invite students to share examples from their own lives in which they might need to multiply two-digit and one-digit numbers. Invite them to imagine and share why Han and Priya might be multiplying 6 times 53.
Supports accessibility for: Attention, Social-Emotional Functioning

Launch

  • Groups of 2

Activity

  • “En silencio, trabajen unos minutos en la actividad. Después, compartan con su compañero cómo pensaron” // “Take a few quiet minutes to work on the activity. Afterward, share your thinking with your partner.”
  • 6–7 minutes: independent work time
  • 3–4 minutes: partner discussion
  • As students work on the last problem, monitor for those who:
    • recognize that base-ten drawings are cumbersome and a less efficient way to find the product
    • draw diagrams that show the two-digit side length partitioned by tens and ones
    • write expressions that show place value reasoning
    • use the distributive property (find the partial products, then add to find the value of the product)

Student Facing

  1. Priya dibujó un diagrama en base diez para multiplicar \(6 \times 53\). Ella dijo que su diagrama muestra que el producto se puede encontrar al sumar 300 y 18.
    Base ten diagram. 6 rows. each row with 5 tens and 3 ones.
    1. ¿En qué lugar de su diagrama ves el 6 y el 53?
    2. ¿En qué lugar del diagrama de Priya ves el 300 y el 18? ¿Qué representan estos números?

  2. Han dibujó este diagrama para multiplicar \(6\times53\):
    Diagram, rectangle partitioned vertically into 2 rectangles.
    ¿En qué lugar de su diagrama ves el 300 y el 18? ¿Qué representan estos números?
  3. ¿Cuál diagrama prefieres para multiplicar \(6 \times 53\): el de Han o el de Priya? Explica tu razonamiento.
  4. Encuentra el valor de \(6 \times 53\).

  5. Dibuja un diagrama para representar cada expresión de multiplicación. Luego, encuentra el valor de cada producto.

    1. \(6 \times 48\)
    2. \(9 \times 67\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Select 2–3 students to share their responses and reasoning.
  • “¿En qué se parecen los diagramas de Han y de Priya?” // “How are Han’s and Priya’s diagrams similar?” (They both show the 53 as 50 and 3. They multiply the parts and add them to find the total value.)
  • “¿En qué son diferentes?” // “How are they different?” (Han just drew a rectangle, and Priya drew all the tens and ones.)
  • “¿Qué expresiones pueden escribir para mostrar cómo multiplicar \(6 \times 53\)? ¿Cuál es el producto?” // “What expressions can you write to show how to multiply \(6 \times 53\)? What is the product?” ( \(6 \times 50) + (6 \times 3)\). The product is 318.)
  • Explain that the 300 and 18 in both Han’s and Priya’s diagrams are called partial products. Each is found by multiplying a part of one of the factors by the other factor.
  • For the last problem, if students do not partition their rectangular diagrams by place value, display the sample diagrams as shown in the student responses without products. Ask:
    • “¿Qué expresiones podemos escribir para representar cada parte del diagrama?” // “What expressions can we write to represent each part of the diagram?” (\(6 \times 40\) and \(6 \times 8\) or  \(9 \times 60\) and \(9 \times 7\).)
    • “¿Cómo nos ayuda separar el número de dos dígitos en decenas y unidades a encontrar el producto?” // “How does partitioning the two-digit number into tens and ones help to find the product?” (Finding multiples of ten and facts like \(6 \times 8\) is easier than finding a product of say, 36 and 8. Then we can add the smaller products together to find the total product.)

Lesson Synthesis

Lesson Synthesis

“Hoy usamos distintos diagramas y expresiones para representar la multiplicación” // “Today we used different diagrams and expressions to represent multiplication.”

Display \(8 \times 79\) and a blank rectangle.

diagram

“¿Cómo podríamos usar este rectángulo para representar \(8 \times 79\)?” // “How could we use this rectangle to represent \(8 \times 79\)?” (Place 8 on one of the sides of the rectangle and partition the rectangle to show 79 across the other side.)

Label the rectangle and partition the rectangles to show 79 decomposed into 70 and 9.

“¿Cómo nos ayuda este diagrama a encontrar el valor de \(8 \times 79\)?” // “How does this diagram help us find the value of \(8 \times 79\)?” (\(8 \times 79\) is hard to do mentally, but I know that it is like finding the area of a rectangle with side lengths 8 and 79. I can decompose the rectangle into smaller rectangles and add the areas of the smaller rectangles to find the area of the large rectangle. Also, I can do \(8 \times 70\) and \(8 \times 9\) in my head, which makes the multiplication easier.)

“¿Cuál es el valor del producto?” // “What is the value of the product?” (632, because \(8 \times 70\) is 560 and \(8 \times 9\) is 72, and \(560 + 72 = 632\))

Cool-down: Representa el producto (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.