Lesson 23

Resolvamos problemas que tienen varias operaciones

Warm-up: Verdadero o falso: Diferencias (10 minutes)

Narrative

The purpose of this True or False is to elicit strategies and understandings students have for finding differences between two numbers. These understandings help students build fluency in addition and subtraction, while preparing them to think about distances between two points.

Students may use estimation or place value understanding to solve the problems (MP7).

Launch

  • Display one statement.
  • “Hagan una señal cuando sepan si la afirmación es verdadera o no, y puedan explicar cómo lo saben” // “Give me a signal when you know whether the statement is true and can explain how you know.”

Activity

  • 1 minute: quiet think time
  • Share and record answers and strategy.
  • Repeat with each statement.

Student Facing

Decide si cada afirmación es verdadera o falsa. Prepárate para explicar tu razonamiento.

  • \(50,\!000 - 999 = 49,\!001\)
  • \(4,\!799 = 5,\!000 - 311\)
  • \(3,\!005 = 4,\!000 -1,\!995\)
  • \(2,\!000 - 1,\!234 = 1,\!876\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Cómo podemos saber si cada ecuación es verdadera sin hacer ningún cálculo?” // “How can we tell if each equation is true without calculating?”
  • “Podríamos usar el algoritmo estándar para encontrar todas las diferencias y luego decidir si la ecuación es verdadera o falsa. ¿Sería una buena idea? ¿Por qué sí o por qué no?” // “We could use the standard algorithm to find each difference and then decide if the equation is true or false. Would that be a good idea? Why or why not?”

Activity 1: Ida y vuelta (20 minutes)

Narrative

This activity prompts students to interpret and represent situations about distances and use multiple operations to solve problems. In problem 3, a piece of information is withheld. Students will need to make sense of what’s missing and find out that information before the question could be answered. Throughout the activity, students reason abstractly and quantitatively as they interpret the diagram and use the information to solve problems (MP2).

Engagement: Develop Effort and Persistence. Some students may benefit from feedback that emphasizes effort and time on task. For example, look for opportunities to provide positive feedback to students who have not finished the task or gotten the right answer, but who have worked carefully, attempted a new strategy, or collaborated productively with their partner.
Supports accessibility for: Social-Emotional Functioning

Launch

  • Groups of 2
  • Give students access to grid paper.
  • Read opening paragraphs as a class. Display the diagram.
  • “¿Qué preguntas matemáticas pueden hacer sobre esta situación?” // “What mathematical questions can you ask about this situation?”
  • 1–2 minutes: quiet think time
  • 1–2 minutes: partners compare questions
  • Share and record responses.

Activity

  • 6–8 minutes: independent work time
  • 3–4 minutes: partner discussion
  • When requested, tell students that 1 mile is equal to 5,280 feet.
  • Monitor for:
    • the different equations students write for the first question (see examples in Student Responses)
    • the assumptions students make when answering the last question (as noted in the narrative)
    • the different ways of reasoning (as noted in the narrative)

Student Facing

La prima de Mai está en la escuela secundaria. Ella va desde su salón inicial al salón de Matemáticas, después al de Inglés, al de Historia y al de Ciencias. Cuando termina su clase de Ciencias, ella recorre el mismo camino de vuelta a su salón inicial.

La prima de Mai hace el mismo recorrido 5 veces cada semana. Estas son las distancias que hay entre los salones.

number line. points labeled as music, homeroom, math, English, history, science.
  1. ¿Qué distancia recorre la prima de Mai en cada recorrido de ida y vuelta (desde su salón inicial hasta los otros cuatro salones y de vuelta)? Escribe una o más expresiones o ecuaciones que muestren cómo razonaste.

  2. Todas las semanas, la prima de Mai hace 3 recorridos de ida y vuelta desde su salón inicial hasta su clase de Música. La distancia total de esos 3 recorridos de ida y vuelta es 2,364 pies.

    ¿Qué tan lejos queda el salón de Música de su salón inicial? Muestra cómo razonaste.

  3. Mai cree que su prima recorre 2 millas cada semana solo caminando de salón en salón. ¿Estás de acuerdo? Explica o muestra cómo razonaste.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Consider collecting and displaying the different expressions students wrote for the first question and discussing what they tell us about the way the writer reasoned about the problems. For example:
    • \(2 \times (157 + 134 + 162 + 275)\) suggests that the writer found the distance one way then doubled it.
    • \((2 \times 157) + (2 \times 134) + (2 \times 162) + (2 \times 275)\) suggests that the distances between classes were doubled first before being added.
  • “¿Cómo averiguaron si la prima de Mai recorría 2 millas cada semana? ¿Qué hicieron primero?, ¿qué hicieron después?” // “How did you find out if Mai’s cousin traveled 2 miles each week? What did you do first? What did you do next?”
  • Select students to share their responses and reasoning.
  • Highlight how the strategies are alike and different.

Activity 2: Reto físico (15 minutes)

Narrative

This activity gives students another opportunity to use multiple operations to model the quantities in a situation and to solve problems involving large numbers. Students interpret the quantities in context, reason about them abstractly as they perform computations, and then return to the context to interpret the results. As they do so, students are reasoning quantitatively and abstractly (MP2).

Students may choose to answer the first problem by dividing a five-digit number by a one-digit divisor. Though finding a quotient of a five-digit dividend is not an expectation, this particular number ends in a 0. Students can use the division strategies they’ve learned so far and what they know about the structure of numbers in base ten to find the quotient (MP7).

MLR8 Discussion Supports. Synthesis: Some students may benefit from the opportunity to rehearse what they will say with a partner before they share with the whole class.
Advances: Speaking

Required Materials

Materials to Gather

Launch

  • Groups of 2
  • Give students access to grid paper.
  • “A veces, las personas compiten para ver quién puede dar la mayor cantidad de pasos en un día, en una semana o en un mes” // “Sometimes people compete to see who can walk the most steps in a day, week, or month.”
  • “Estas competencias se llaman retos” // “These competitions are called challenges.”
  • “Esta actividad se trata de un reto físico sobre la cantidad de pasos” // “This activity involves a fitness challenge involving steps.”

Activity

  • 6–8 minutes: independent work time
  • Monitor for the different ways students reason about each question.

Student Facing

Para motivar a los estudiantes a hacer ejercicio, en la escuela de Han organizaron un reto físico en el que habrá premios.
image of a sign. Fitness Challenge! 4 thousand steps a day, 1 hundred 20 thousand total, 4 weeks. Sign up and get your free step tracker today!
  1. Han dio 32,550 pasos la primera semana. Cada día dio el mismo número de pasos. ¿Cuántos pasos dio Han cada día? Muestra cómo razonaste.
  2. La tabla muestra el número de pasos que dio Han cada semana durante las tres primeras semanas. De la primera semana a la segunda semana, ¿en cuánto bajó el número de pasos?

    semana 1 semana 2 semana 3 semana 4
    32,550 28,098 36,249 \(\phantom{\huge{00000}}\)
  3. Si Han quiere superar el reto, ¿cuál es el menor número de pasos que necesita dar en la semana 4? Muestra cómo razonaste.
  4. ¿Cómo sabes que tu respuesta al problema 3 es razonable?

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Invite students to share their responses and reasoning.
  • Focus the discussion on how students found the number of steps Han took each day and how they found the last number in the table.
  • “¿Cómo saben si su respuesta a la primera pregunta es correcta?” // “How would you know if your answer to the first question is correct?” (Multiply 4,650 by 7 to see if it equals 32,550.)
  • “¿Cómo saben si su respuesta a la pregunta 3 es razonable?” // “How would you know if your answer to problem 3 is reasonable?” (Add it to the other three numbers and see if the sum is 120,000.)

Lesson Synthesis

Lesson Synthesis

“Hoy resolvimos problemas que tenían números de cuatro dígitos o más. Algunos de esos problemas se podían interpretar de más de una forma” // “Today we solved problems that involved numbers with four or more digits. Some of those problems could be interpreted in more than one way.”

“En la actividad del reto físico, en la que debían encontrar los pasos que dio Han cada día, ¿pensaron en términos de la multiplicación (qué número multiplicado por 7 es 32,550) o en términos de la división (cuánto es 32,550 dividido entre 7)? ¿Alguna forma de pensar es más conveniente? ¿Por qué sí o por qué no?” // “In the fitness challenge activity, how did you think about finding Han’s steps each day? Did you think of it in terms of multiplication (what number times 7 is 32,550?) or in terms of division (what is 32,550 divided by 7?)? Is one way of thinking more convenient? Why or why not?”

To facilitate discussion, display equations such as:

\(7 \times n = 32,\!550\)

\(32,\!550 \div 7 = n\)

“Para encontrar cuántos pasos dio Han en la semana 4, ¿pensaron en términos de la suma (qué número se le debe sumar a 96,897 para formar 120,000) o en términos de la resta (cuál es la diferencia entre 120,000 y 96,897)?” // “How did you think about finding Han’s steps in week 4? Did you think in terms of addition (what number must be added to 96,897 to make 120,000?) or subtraction (what is the difference between 120,000 and 96,897?)?”

Display equations such as:

\(32,\!550 + 28,\!098 + 36,\!249 + f = 120,\!000\)

\(96,\!897 + f = 120,\!000\)

\(120,\!000 - 96,\!897 = f\)

Cool-down: Conducir una gran distancia (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.