Lesson 4

Patrones numéricos

Warm-up: Cuál es diferente: Cuadrados apilados (10 minutes)

Narrative

This warm-up prompts students to carefully analyze and compare representations of patterns. Listen for the language students use to describe and compare the elements of each pattern and give them opportunities to clarify what they mean when they use numbers to describe the patterns (MP6).

Launch

  • Groups of 2
  • Display image.
  • “Escojan uno que sea diferente. Prepárense para compartir por qué es diferente” // “Pick one that doesn’t belong. Be ready to share why it doesn’t belong.”
  • 1 minute: quiet think time

Activity

  • “Discutan con su compañero cómo pensaron” // “Discuss your thinking with your partner.”
  • 2–3 minutes: partner discussion
  • Share and record responses.

Student Facing

¿Cuál es diferente?

Apattern of gridded rectangles. Step 1, 2 rows of 2 squares. Step 2, 3 rows of 2 squares. Step 3, 4 rows of 2 squares. Step 4, 5 rows of 2 squares.

Bpattern of gridded rectangles.

C2, 4, 6, 8

Dpattern of gridded rectangles.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Qué características de los diagramas examinaron cuando trataron de encontrar cuál era diferente?” // “What features of the diagrams did you look at when you tried to find which one doesn’t belong?” (Sample response: the number of small squares in each shape)
  • If time permits, ask students to think about which one doesn’t belong if they pay attention to the number of rows or the perimeter rather than the number of squares.

Activity 1: Contemos de 10 en 10 y de 9 en 9 (20 minutes)

Narrative

This activity prompts students to examine patterns in multiples of 10 and 9, and to notice that the digits in the multiples of 9 can be reasoned in relation to the more-familiar multiples of 10. Students use what they know about the place value and operations to explain the patterns in these multiples (MP7). For instance, students may reason that, because 9 is 1 less than 10, to find \(12 \times 9\) is to find the \(12 \times 10\) and then subtract 1 twelve times (or subtract \(12 \times 1\)) from the product.

The reasoning in this activity prepares them to notice patterns in the multiples of 100 and 99 in the next lesson.

MLR8 Discussion Supports. Use multimodal examples to show the patterns of both columns. Use verbal descriptions along with gestures, drawings, or concrete objects to show the connection between the multiples of 9 and 10.
Advances: Listening, Representing
Representation: Access for Perception. Synthesis: Use pictures of the long rectangle base-ten blocks to help students visualize the patterns. For example, display a picture of eight long rectangle base-ten blocks. Count by 10 while pointing to each block. Then, cross out one unit in each block and discuss how this shows that counting by 9 is like multiplying by 10 and subtracting.
Supports accessibility for: Conceptual Processing, Visual Spatial Processing

Launch

  • Groups of 2
  • Read the opening paragraph as a class.
  • “¿Qué prefieren: contar de 10 en 10 o contar de 9 en 9? ¿Por qué?” // “Which do you prefer, counting by 10 or counting by 9? Why?” (Counting by 10 because I've been doing that since kindergarten.)
  • 30 seconds: partner discussion
  • “Exploremos los números que obtenemos al contar de 9 en 9 y de 10 en 10, y veamos qué patrones podemos encontrar” // “Let’s look at numbers we get by counting by 9 and by 10 and see what patterns we can find.”

Activity

  • “En silencio, trabajen unos minutos en los primeros problemas. Luego, compartan cómo pensaron y completen el resto de la actividad con su compañero” // “Take a few quiet minutes to work on the first few problems. Then, share your thinking and complete the rest of the activity with your partner.”
  • 5–6 minutes: independent work time
  • 5–6 minutes: partner discussion
  • Monitor for students who:
    • can clearly explain the pattern of the digits in multiples of 10 in terms of place value
    • notice connections between the values in the two columns and use them to explain the patterns in the digits in multiples of 9

Student Facing

En la clase de Andre cuentan juntos de 10 en 10 y luego de 9 en 9. La columna de la izquierda muestra los números que dicen al contar de 10 en 10.

  1. Completa la columna de la derecha con los diez primeros números que van a decir al contar de 9 en 9.

    ¿Qué patrones observas en los números de cada columna? Haz al menos dos observaciones sobre cada lista de números.

    contando de 10 en 10 contando de 9 en 9
    10
    20
    30
    40
    50
    60
    70
    80
    90
    100
  2. Observa los números de la columna “contando de 10 en 10” y responde:

    1. ¿Por qué crees que los dígitos de la posición de las decenas cambian de esa forma?
    2. ¿Por qué crees que los dígitos de la posición de las unidades son así?
  3. Observa los números de la columna “contando de 9 en 9” y responde: ¿Por qué crees que los dígitos de la posición de las unidades cambian de esa forma? Explica tu razonamiento.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

Students may not see that the digit in the ones place decreases by 1 each time the count goes up by 9. Consider asking:

  • “¿Qué patrones ves en la pareja de números de cada fila?” // “What patterns do you see in the pair of numbers in each row?”
  • “¿Cómo crees que los números de la columna ‘contando de 9 en 9’ se relacionan con los números de la columna ‘contando de 10 en 10’?” // “How do you think the numbers in the ‘counting by 9’ column are related to those in the ‘counting by 10’ column?”

Activity Synthesis

  • Display the completed table.
  • Invite students to share the patterns they noticed in the numbers in each column. Record their observations by annotating the numbers in the table.
  • If no students mentioned that the two sets of numbers are multiples of 10 and multiples of 9, ask them about it.
  • Select previously identified students to share their responses to the last two problems.
  • If no students reason that counting by 9 can be thought of as counting by 10 and subtracting 1 each time, bring this to their attention.
  • In other words, counting by 9 once means \(10- 1\) , which is 9. Counting by 9 again means adding another \(10 -1\) to 9, or \(9 + 10 - 1\), which is 18.  Counting by 9 a third time means \(18 + 10 - 1\), which is 27. And so on.
  • “Contar ocho veces de 9 en 9 es lo mismo que contar ocho veces de 10 en 10 y restar 1 ocho veces, es decir, \((8 \times 10) - (8 \times 1)\). Esto es \(80 - 8\), es decir, 72” // “Counting by 9 eight times is the same as counting by 10 eight times and subtracting 1 eight times, or \((8 \times 10) - (8 \times 1)\), which is \(80 - 8\) or 72.”

Activity 2: Contemos de 99 en 99 (15 minutes)

Narrative

In this activity, students continue to analyze patterns in numbers. This time, they look at the relationship between multiples of 100 and multiples of 99. As in the previous activity, they rely on their understanding of place value and operations to explain the patterns in the digits of the numbers (MP7). Although the use of the distributive property is not expected or made explicit, the work in both activities in this lesson develops students’ intuition for seeing, for instance, that \(12 \times (10 - 1) = (12 \times 10) - (12 \times 1)\).

Launch

  • Groups of 2
  • “Antes, contamos de 9 en 9 y encontramos algunos patrones en los números. Ahora veamos qué patrones podemos encontrar cuando contamos de 99 en 99” // “Earlier we counted by 9 and found some patterns in the numbers. Now let’s see what patterns we can find when we count by 99.”

Activity

  • “Completen la actividad con su compañero” // “Work with your partner to complete the activity.”
  • 8–10 minutes: partner work time
  • Monitor for students who:
    • Identify different patterns in the numbers
    • reason about the numbers in the “counting by 99” column (multiples of 99), by reasoning about multiples of 100

Student Facing

En la clase de Andre contaron juntos de 99 en 99. Estos son los primeros seis números que dijeron.

  1. Estudia la lista de números. Haz al menos 3 observaciones sobre las características del patrón.
    contando de 99 en 99
    99
    198
    297
    396
    495
    594

  2. Continúa la lista con los cuatro múltiplos de 99 que siguen. Prepárate para discutir cómo supiste qué números escribir.
  3. ¿Por qué crees que los dígitos de los números cambian de esa forma?

    image of 3 text bubble. ninety 9. 1 hundred ninety 8. dot, dot, dot.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Select students to share the features of the patterns they noticed, making sure to highlight the digits in each the hundreds, tens, and ones place. Annotate the numbers as needed.
  • Select other students to share how they extended the patterns and record their responses. If no students mentioned using multiples of 100 as a strategy, discuss this with students.
  • “Contar cinco veces de 99 en 99 es lo mismo que contar cinco veces de 100 en 100 y restar 1 cinco veces; es decir, \((5 \times 100) - (5 \times 1)\)” // “Counting by 99 five times is the same as counting by 100 five times and subtracting 1 five times, or \((5 \times 100) - (5 \times 1)\).”
  • “¿Cómo podemos usar el patrón para encontrar el 20º. múltiplo de 99?” // “How can we use the pattern to find the 20th multiple of 99?” (Find \(20 \times 100\) and subtract \(20 \times 1\) from it.)

Activity 3: Contemos de 15 en 15 [OPTIONAL] (20 minutes)

Narrative

In this optional activity, students investigate patterns in multiples of 15 and analyze and describe features of the digits in the tens and ones place. The activity also prompts them to consider why those features exist and to predict whether a given number could be a multiple of 15. The goal here is not to elicit clear justifications, but rather to encourage students to use their understanding of place value and numbers in base-ten to reason more generally about patterns in numerical patterns.

This activity uses MLR5 Co-craft Questions. Advances: writing, reading, representing

Launch

  • Groups of 2

MLR5 Co-Craft Questions

  • Display only the opening sentence and list of numbers, without revealing the question(s).
  • “Escriban una lista de preguntas matemáticas que se pueden hacer sobre esta situación” // “Write a list of mathematical questions that could be asked about this situation.”
  • 2 minutes: independent work time
  • 2–3 minutes: partner discussion
  • Invite several students to share one question with the class. Record responses.
  • “¿En qué se parecen estas preguntas? ¿En qué son diferentes?” // “What do these questions have in common? How are they different?”
  • Reveal the task (students open books), and invite additional connections.
  • “Veamos qué características podemos encontrar en el patrón que se forma cuando contamos de 15 en 15” // “Let’s see what patterns we can find when we count by 15.”

Activity

  • “En silencio, trabajen unos minutos en la actividad. Después, discutan sus respuestas con su compañero” // “Take a few quiet minutes to work on the activity. Afterwards, discuss your responses with your partner.”
  • 5 minutes: independent work time
  • 5 minutes: partner discussion
  • Monitor for:
    • the different patterns students notice
    • the different ways they explain the patterns
    • the ways students reason about whether 250 could be a number being called out

Student Facing

Elena contó de 15 en 15 y anotó los números que contó:

  • 15
  • 30
  • 45
  • 60
  • 75
  • 90
  1. Escribe los cuatro números que ella anotaría después si siguiera contando.

  2. ¿Qué características del patrón observas? Describe tantas características como puedas.
  3. Escoge una característica que hayas observado y explica por qué crees que ocurre.
  4. Si Elena siguiera contando de 15 en 15, ¿sería posible que dijera 250? Explica tu razonamiento.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

To answer the last question, students may try to count up by 15 and see if they would reach 250. Encourage students to see if any of the patterns they noticed could help them answer the question.

Activity Synthesis

  • Invite students to share the patterns they noticed and their explanations for the patterns. Record them for all to see.
  • Select other students to share their explanation on whether 250 could be a number that Elena calls said. Highlight explanations that make use of the structure in the numbers.

Lesson Synthesis

Lesson Synthesis

“Hoy vimos distintas características de los patrones formados por los números que obtenemos al contar de 9 en 9, de 10 en 10, de 99 en 99 y de 100 en 100” // “Today we saw different features of patterns in the numbers that we get when counting by 9, 10, 99, and 100.” (Include 15, if students completed the optional activity).

“¿Qué ideas nuevas tuvieron sobre los patrones en esta sección?” // “What new ideas did you have about patterns in this section?”

“¿Qué se preguntan todavía sobre los patrones?” // “What are you still wondering about patterns?”

Cool-down: Cuenta de 8 en 8 (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.

Student Section Summary

Student Facing

En esta sección, estudiamos patrones de figuras y patrones de números. Vimos figuras que crecían o que se repetían siguiendo ciertas reglas y usamos números que nos ayudaron a ver cómo cambiaban las figuras. Estos son algunos ejemplos de los patrones:
  • Figuras que crecen siguiendo una regla: agregar 1 fila de cuadrados de igual tamaño
    pattern of gridded rectangles. Step 1, 2 row of 2 squares. Step 2, 3 rows of 2 squares. Step 3, 4 rows of 2 squares. Step 4, 5 rows of 2 squares.

    Área del rectángulo:
    4, 6, 8, 10, .  .  .

  • Figuras que se repiten siguiendo una regla: triángulo, círculo, triángulo, cuadrado, repetir
    pattern of shapes. black triangle. white circle. black triangle. blue square. Pattern repeats three times. Shapes numbered 1 through 12.

    ▲ : 1, 3, 5, 7, . .

    ◯ : 2, 6, 10, . . .

    ▨ : 4, 8, 12, . . .

  • Rectángulos que cambian siguiendo una regla: aumentar el largo del rectángulo 5 pulgadas
    pattern of rectangles, all with vertical sides, 3 inches.

    Largo:
    5, 10, 15, 20, . . .

    Área:
    15, 30, 45, 60, . . .

    Perímetro:
    16, 26, 36, 46, . . .
  • Números que cambian siguiendo una regla
    • Sumar 9: 9, 18, 27, 36, 45
    • Sumar 10: 10, 20, 30, 40, 50
    • Sumar 99: 99, 198, 297, 396, 495
    • Sumar 100: 100, 200, 300, 400, 500

Aprendimos a continuar un patrón: para esto, lo primero que hacemos es descubrir qué regla sigue. A veces podemos usar la suma y la multiplicación para representar una regla y luego continuar el patrón. Otras veces, podemos observar cómo cambian los dígitos de los números para hacer predicciones.