Lesson 2

Patrones que se repiten

Warm-up: Cuántas ves: Fichas de colores (10 minutes)

Narrative

This warm-up encourages students to look for structure in the ways the symbols or colors repeat and to use grouping strategies or the structure they see (MP7) to quantify something that would be tedious to count individually. The work here prepares students to analyze and describe patterns formed by repetition later in the lesson.

Launch

  • Groups of 2
  • “¿Cuántas ven? ¿Cómo lo saben?, ¿qué ven?” // “How many do you see? How do you see them?”
  • Flash image.
  • 30 seconds: quiet think time

Activity

  • Display image.
  • “Discutan con su compañero cómo pensaron” // “Discuss your thinking with your partner.”
  • 1 minute: partner discussion
  • Record responses.

Student Facing

¿Cuántas fichas ves? ¿Cómo lo sabes?, ¿qué ves?

pattern of tiles.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Qué patrones les ayudaron a descubrir cuántas fichas había?” // “What patterns helped you figure out how many tiles there were?” (Repeating colors, repeating symbols, repeating groups of 4 tiles)

Activity 1: Patrones que se repiten (20 minutes)

Narrative

In this activity, students analyze a pattern with repeating shapes and look for as many features of the pattern as they can find. They then extend the pattern based on their observations. Students also generate an original pattern of shapes that repeat by following a rule. The work here prepares students to reason about such patterns represented numerically in the next activity.

MLR8 Discussion Supports. During group work, invite students to take turns sharing their responses. Ask students to restate what they heard using precise mathematical language and their own words. Display the sentence frame: “Te escuché decir . . .” // “I heard you say . . .” Original speakers can agree or clarify for their partner.
Advances: Listening, Speaking

Launch

  • Groups of 2

Activity

  • “Recuerden el patrón hecho con figuras del primer problema. En silencio, encuentren más de una característica de ese patrón. Luego, compartan con su compañero cómo pensaron” // “Take a few quiet minutes to find more than one feature of the pattern made with shapes in the first problem. Then, share your thinking with your partner.”
  • 2 minutes: quiet think time on the first part of the first problem
  • 3–4 minutes: partner work time on the rest of the first problem
  • Pause for a discussion before students proceed to the second problem. Invite students to share their responses.
  • “Ahora creen su propio patrón con un círculo y otra figura” // “Now, create a pattern of your own by repeating a circle and another shape.” (Alternatively, students can create a pattern that uses only two colors.)
  • “Cuando hayan terminado, intercambien su patrón con el de su compañero y completen el resto del segundo problema” // “When you’re done, trade your pattern with your partner and complete the rest of the second problem.”

Student Facing

  1. Este patrón se hizo organizando figuras.

    pattern of shapes. black triangle, white circle, black triangle, blue square. Patterns repeats three times.
    1. Busca todas las características que puedas del patrón y descríbeselas a tu compañero.
    2. ¿Qué regla puede estar siguiendo este patrón?

    3. Usando esa regla, continúa el patrón para que se repita una vez más.
  2. Crea un nuevo patrón que use solamente un círculo y otra figura, y que siga una regla nueva.

    Diagram. Rectangle partitioned into 12 equal sized squares.
    1. Intercambia tu patrón con el de tu compañero. Busca todas las características que puedas del patrón y descríbelas.
    2. ¿Qué regla pudo haber seguido tu compañero para crear su patrón?

    3. Usando esa regla, continúa el patrón de tu compañero para que se repita una vez más.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • If time permits, invite 1–2 groups of students to share their patterns.

Activity 2: Patrones enumerados (15 minutes)

Narrative

In this activity, students number the shapes in the pattern from the first activity, examine and use features of the numerical patterns to predict the shapes in particular spots.

Launch

  • Groups of 3–4
  • Assign each group member one shape in the design.
  • “Anoten el nombre de la figura que les asigné en los cuatro espacios en blanco del segundo problema” // “Record your assigned shape in the four blanks in the second problem.”

Activity

  • “Enumeren las figuras del patrón en orden del 1 al 12” // “Number each shape in the pattern of shapes from 1 to 12, in order.”
  • “Luego, trabajen individualmente para responder las preguntas del segundo problema usando la figura que les asigné” // “Then, work independently to answer the questions in the second problem, using the shape assigned to you.”
  • “Después, compartan con su grupo lo que descubrieron” // “Afterwards, share your findings with your group.”
  • 5 minutes: independent work time
  • 5 minutes: small-group discussion
  • Monitor for the different ways students answer the questions. They may, for instance:
    • use skip-counting (4, 8, 12, . . .)
    • reason additively (add 2 or 4 each time) or use “_____ more” language
    • reason multiplicatively or use the term “multiples” (multiples of 2 or 4, or groups of 2 or 4)
    • write addition or multiplication expressions or equations

Student Facing

Este es el patrón de figuras que viste antes.

pattern of shapes. black triangle, white circle, black triangle, blue square. Patterns repeats three times.

  1. Enumera las figuras del 1 al 12.
  2. Tu profesor te va a asignar una figura. Anota su nombre en cada espacio en blanco y responde las preguntas.

    1. ¿Qué números escribiste para los ____________________?
    2. Si continúas el patrón, ¿cuáles números escribirías para los siguientes dos _____________________?

    3. ¿Qué número tendrá el décimo ____________________? Explica o muestra cómo razonaste.

    4. ¿La figura número 30 será un ____________________? Explica o muestra cómo razonaste.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Invite one student who worked on each shape to share their responses and reasoning. Record the number sequences for all to see.
  • “¿En qué se parecen los patrones numéricos? ¿En qué son diferentes?” // “How are the numerical patterns the same? How are they different?”

Activity 3: El patrón de Clare (15 minutes)

Narrative

This optional activity prompts students to generate a shape pattern given a rule and to describe the numerical patterns that are created when they number the shapes. They make predictions about whether a certain value or shape would appear in a particular position of the pattern (MP2).

While students may make predictions in a number of ways, during the synthesis, highlight reasoning that is based on the idea of multiples or adding a certain multiple to a number. 

Action and Expression: Develop Expression and Communication. Provide students with alternatives to writing on paper. Students can share their learning verbally.
Supports accessibility for: Language, Conceptual Processing

Launch

  • Groups of 2
  • “Clare está pensando en cierta manera de organizar unas figuras. Observemos su diseño y hagamos algunas predicciones sobre él” // “Clare has in mind a particular arrangement of shapes. Let’s see what her design looks like and make some predictions about it.”

Activity

  • “Trabajen individualmente durante unos minutos y luego compartan con su compañero lo que pensaron” // “Work independently for a few minutes, and then share your thinking with your partner.”
  • 5–7 minutes: independent work time
  • 2–3 minutes: partner discussion
  • Monitor for the ways students:
    • describe the rule
    • reason about the 31st shape in Clare’s pattern
    • reason about whether a square could be the last one of 40 shapes

Student Facing

Clare creó un patrón usando 3 figuras: un triángulo, un círculo y un cuadrado. Las figuras se repiten en ese orden.

  1. Dibuja las primeras 10 figuras del patrón de Clare.
  2. Clare enumeró sus figuras. ¿Qué números le corresponden a los primeros 5 cuadrados?
  3. ¿Qué regla está siguiendo el patrón numérico?
  4. ¿Cuál es la figura número 31 del patrón de Clare? Explica o muestra cómo razonaste.
  5. Clare piensa usar 40 figuras en su patrón y quiere que la última figura sea un cuadrado. ¿Esto es posible? Explica o muestra cómo razonaste.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students extend the pattern one shape at a time until it reaches the 31st term, consider asking: “¿Cómo nos pueden ayudar los números a encontrar la figura número 31?” // “How can the numbers help us find the 31st shape?”

Activity Synthesis

  • Select students to share their responses and reasoning to the last two problems.
  • If all students used the numerical pattern that represents squares to help them find the 31st shape or to reason about the last shape in a list of 40, ask:
    • “¿Es posible responder las últimas dos preguntas usando el patrón numérico que representa los triángulos?” // “Is it possible to answer the last two questions using the numerical pattern that represents triangles?” (Yes. The numbers would be 1, 4, 7, . . . We could keep adding 3 or multiples of 3 to one of these numbers to see if we get 31 at some point.)
    • “¿Es posible usar el patrón numérico para representar los círculos?” // “Is it possible to use the numerical pattern to represent the circles?” (Yes. The numbers would be 2, 5, 8, . . . We could keep adding 3 or multiples of 3 to one of these numbers.)
  • “¿Cuál sería una razón para usar el patrón numérico que representa los cuadrados?” // “Why might you want to use the numerical pattern that represents the squares?” (The numbers are all multiples of 3, which are familiar numbers. We can reason using only multiplication, instead of adding repeatedly.)

Lesson Synthesis

Lesson Synthesis

“Hoy exploramos patrones creados con figuras que se repiten siguiendo una regla. Cuando enumeramos las figuras, creamos un patrón numérico” // “Today we explored patterns created by shapes that repeat according to a rule. When we numbered the shapes, we created a numerical pattern.”

Display numerical patterns that represent each shape in the last activity:

Triangles: 1, 3, 5, 7, 9

Circles: 2, 6, 10, 14, 18

Squares: 4, 8, 12, 16, 20

“Estos son algunos de los patrones numéricos que vimos en esta lección. Sin hacer una lista de todos los 50 números de cada patrón, ¿cómo encontrarían el número que está en la posición 50 de cada uno?” // “Here are some numerical patterns we saw in this lesson. How would you find the 50th number in each pattern, without listing all 50 numbers?” (Sample responses:

  • For triangles: Add \(45 \times 2\) to 9, or find \(9 + (45 \times 2)\)
  • For circles: Add \(45 \times 4\) to 18, or find \(18 + (45 \times 4)\)
  • For squares: Find the 50th multiple of 4, or \(50 \times 4\).)

Cool-down: Caritas felices (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.