Lesson 15

Situaciones que involucran áreas

Warm-up: Exploración de estimación: Área de un campo de fútbol (10 minutes)

Narrative

The purpose of this warm-up is to elicit students’ understandings of the relationship between the side lengths of a rectangle and its area. These understandings prepare students to reason about an unknown length or width of rectangles in the activities.

Students use their understanding about the relationship between multiplication and division, and their understanding of multiples of 10 to divide beyond 100.

Launch

  • Groups of 2
  • Display the image.
  • “¿Qué estimación sería muy alta?, ¿muy baja?, ¿razonable?” // “What is an estimate that’s too high?” “Too low?” “About right?”
  • 1 minute: quiet think time

Activity

  • “Discutan con su pareja cómo pensaron” // “Discuss your thinking with your partner.”
  • 1 minute: partner discussion
  • Record responses.

Student Facing

Estima: ¿Cuál es el largo del campo de fútbol, en metros?

image of a soccer field. Vertical side, 40 meters. Horizontal side, question mark. area, 2 thousand 2 hundred eighty square meters.

Escribe una estimación que sea:

muy baja razonable muy alta
\(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Cómo hicieron su estimación? ¿Cómo supieron que era razonable?” // “How did you make your estimate? How did you know it’s reasonable?” (Sample response: I know that the area is about 2,300 and one of the side lengths is 40. I know that \(40 \times 60 = 2,\!400\) and \(40 \times 50 = 2,\!000\), so the estimate is between 50 and 60, but closer to 60.)
Consider asking:
  • “¿Alguien hizo una estimación menor que 40 metros? ¿Alguien hizo una estimación mayor que 60 metros?” // “Is anyone’s estimate less than 40 meters? Is anyone’s estimate greater than 60 meters?”
  • “Teniendo en cuenta esta discusión, ¿alguien quiere ajustar su estimación?” // “Based on this discussion does anyone want to revise their estimate?”

Activity 1: El mural de Elena (15 minutes)

Narrative

In this activity, students find the length of one side of a rectangle given the length of the other side and the area of the rectangle. This work builds on what students have done in grade 3, where the area was within 100 square units. In this lesson, the area is a three-digit number beyond 100.

The use of tiles as a context and the presence of a grid allow students to see more concretely the relationship between a product and a factor, but the size of the product discourages students to count the tiles to find the unknown factor. Instead, students are encouraged to find multiples of the known factor or to decompose the product into parts (MP2).

Representation: Internalize Comprehension. Synthesis: Invite students to identify what information and thinking was most helpful to solve the problem. Record their responses, including mathematical language and pictures, and encourage them to use this display as a reference for the next activity.
Supports accessibility for: Conceptual Processing, Memory

Launch

  • Groups of 2
  • Explain what a mural is or show an image.

Activity

  • 5 minutes: independent work time
  • 2 minutes: partner discussion
  • Monitor for students who use multiples of 10 and 7 and then either add or subtract multiples of 7 to reach 189.

Student Facing

Para el club de arte, Elena creó un mural rectangular usando 189 baldosas cuadradas. El mural mide 7 baldosas de ancho.
gridded rectangle. a vertical side of 7 units darken on the left side of the third column.

  1. ¿Cuántas baldosas de largo mide el mural? Prepárate para explicar o mostrar cómo lo sabes.
  2. Escribe una o más ecuaciones que muestren cómo resolviste este problema.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Select students to share their responses and reasoning. Display their responses for all to see.
  • Highlight strategies that use multiples of 10 and 7 to find the side length of the rectangle. If no students use an area diagram in their reasoning, display an example for all to see (as shown in Student Responses).
  • Invite students to write the equations they wrote. If no division equations are included, display division equations and ask students if they could be used to answer the question. (For instance, \(140 \div 7 = 20\) and \(49 \div 7 = 7\), so \(189 \div 7 = 27\).)

Activity 2: El mural de Tyler (20 minutes)

Narrative

This activity continues the work in the first activity. It uses a similar context and prompts students to reason about division, but the result of the division has a remainder, which students will need to interpret.

After students have had some independent work time, consider a gallery walk of strategies.

  • Post 3–4 posters around the room, each showing a likely strategy for the last problem, such as using partial products, partial quotients, pictures, or words.
  • Provide some blank posters for students to show additional unique strategies.

This activity uses MLR7 Compare and Connect. Advances: representing, conversing

MLR7 Compare and Connect. Synthesis: After the Gallery Walk, lead a discussion comparing, contrasting, and connecting the different approaches. To amplify student language, and illustrate connections, follow along and point to the relevant parts of the displays as students speak.
Advances: Representing, Conversing

Required Materials

Materials to Gather

Required Preparation

  • If doing a gallery walk, create 3–4 posters to display during the activity that show or describe different strategies students are likely to use to solve the problem.  

Launch

  • Groups of 2
  • Give access to grid paper, in case students wish to use it to create an area diagram.

Activity

MLR7 Compare and Connect

  • 2–5 minutes: independent or group work
  • Give each student a sticky note.
  • “Den una vuelta para ir a ver cada póster. Pongan su nota adhesiva en el póster que tenga la misma estrategia que ustedes usaron o que sea la que más sentido tenga para ustedes” // “Make one round to visit each poster. Place your sticky note on the poster with a strategy that matches your strategy or that makes the most sense to you.”
  • “Después de su primera vuelta, den otra vuelta y observen 1 o 2 pósteres que no hayan escogido. Denle sentido a la estrategia que muestra el póster y prepárense para explicar por qué es diferente de la de ustedes” // “After your first round, make another round to visit 1–2 other posters that you didn’t select. Make sense of the strategy of the poster and be prepared to explain how it is different than yours.”
  • 5–7 minutes: gallery walk

Student Facing

Tyler también está creando un mural rectangular para el club de arte. Tiene 197 baldosas para su mural. Su mural mide 6 baldosas de ancho.

  1. ¿Tyler podrá usar todas sus baldosas en su mural? Explica tu razonamiento.
  2. ¿Cuántas baldosas de largo mide el mural de Tyler? Muestra tu razonamiento. Usa números, dibujos o palabras.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Discuss the results of the gallery walk: “¿Cuál estrategia parece ser la más común?, ¿la menos común? ¿Por qué creen que esa es la más común o la menos común?” // “Which strategy seems to be most common? The least common? Why might they be the most or least common?”
  • “¿Cuántas baldosas usó Tyler para su mural? ¿Cómo lo saben?” // “How many tiles did Tyler use for his mural? How do you know?” (Tyler uses 192 tiles because the mural is rectangular and there are 6 rows of tiles. 192 is the greatest multiple of 6 within 197.)
  • “¿Cuántas baldosas no se usaron?” // “How many tiles were not used?” \((197 - 192 = 5\). Five tiles were not used.)
  • Consider asking: “¿Por qué usar cocientes parciales es una estrategia útil para encontrar la longitud del lado?” // “How are partial quotients a helpful strategy for finding the side length?” (Sample response: I can use multiples of 10, which are easy to divide in my head. For example, the greatest multiple of 10 that is also a multiple of 6 within 197 is 180. I try to choose the greatest number so that I can keep track of the dividend. \(197 - 180 = 17\). 17 is left from the dividend to divide by 6, but 17 is not a multiple of 6, so I repeat the strategy. The greatest multiple of 6 within 17 is 12, and 5 is remaining.)

Lesson Synthesis

Lesson Synthesis

“Hoy usamos la división para encontrar longitudes de lados de rectángulos. Conocíamos el área del rectángulo y la longitud de uno de los lados, y usamos la división para encontrar la longitud del otro lado” // “Today we used division to find side lengths of rectangles. For each rectangle, we knew the area and the length of one side and we used division to find the length of the other.”

“¿Qué relación hay entre las longitudes de los lados y el área de un rectángulo?” // “What is the relationship between the side lengths and the area of a rectangle?” (The area is the product of the two side lengths.)

“¿Cómo encontramos la longitud desconocida del lado?” // “How do we find the missing side length?” (Divide the area by the side length that we do know, or multiply one side length by different numbers until we find the area.)

Cool-down: Notas adhesivas en la puerta (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.