Lección 2

Multipliquemos potencias de diez

Exploremos patrones con exponentes cuando multiplicamos potencias de 10.

2.1: ¿100, 1 o 1/100?

A large square composed of 100 small squares

Clare dijo que observaba 100.

Tyler dice que observa 1.

Mai dice que observa \frac{1}{100}.

¿Con quién estás de acuerdo?

2.2: Imaginemos una potencia de 10

En el diagrama, el rectángulo mediano está formado por 10 cuadrados pequeños. El cuadrado grande está formado por 10 rectángulos medianos.

A large square composed of 100 blocks, 10 by 10. A rectangle composed of 10 blocks, 10 by 1, a square composed of a single block.
  1. ¿Cómo podrías representar el cuadrado grande como una potencia de 10?
  2. Si cada cuadrado pequeño representa 10^2, entonces ¿qué representa el rectángulo mediano?, ¿y el cuadrado grande?
  3. Si el rectángulo mediano representa 10^5, entonces ¿qué representa el cuadrado grande?, ¿y el cuadrado pequeño?
  4. Si el cuadrado grande representa 10^{100}, entonces ¿qué representa el rectángulo mediano?, ¿y el cuadrado pequeño?

2.3: Multipliquemos potencias de diez

    1. Completa la tabla para descubrir patrones en los exponentes al multiplicar potencias de 10. Puedes omitir un solo elemento en la tabla, pero si lo haces, prepárate para explicar por qué lo hiciste.
      expresión expresión desarrollada como una sola potencia de 10
      10^2 \boldcdot 10^3 (10 \boldcdot 10)(10\boldcdot 10 \boldcdot 10) 10^5
      10^4 \boldcdot 10^3    
      10^4 \boldcdot 10^4    
        (10 \boldcdot 10 \boldcdot 10)(10 \boldcdot 10 \boldcdot 10 \boldcdot 10 \boldcdot 10)  
      10^{18} \boldcdot 10^{23}    
    2. Si elegiste omitir un elemento en la tabla, ¿cuál fue ese elemento?, ¿por qué ese elemento?
    1. Usa los patrones que encontraste en la tabla para escribir 10^n \boldcdot 10^m como una expresión equivalente con un solo exponente, como 10^{\boxed{\phantom{3}}}.
    2. Usa tu regla para escribir 10^4 \boldcdot 10^0 con un solo exponente. ¿Qué te indica esto acerca del valor de 10^0?
  1. El estado de Georgia tiene aproximadamente 10^7 habitantes. Cada habitante tiene aproximadamente 10^{13} células de bacterias en su aparato digestivo. ¿Cuántas células de bacterias hay en los aparatos digestivos de todos los habitantes de Georgia?


Hay cuatro maneras de obtener 10^4 al multiplicar potencias de 10 que tienen exponentes positivas menores que 4. 

\displaystyle 10^1 \boldcdot 10^1 \boldcdot 10^1 \boldcdot 10^1

\displaystyle 10^1 \boldcdot 10^1 \boldcdot 10^2

\displaystyle 10^1 \boldcdot 10^3

\displaystyle 10^2 \boldcdot 10^2

(La lista está completa si no se presta atención al orden en el cual se escriben las expresiones. Por ejemplo, solo contamos 10^1 \boldcdot 10^310^3 \boldcdot 10^1 una vez).

  1. ¿Cuántas maneras hay de obtener 10^6 al multiplicar potencias de 10 más pequeñas que 10^6?
  2. De este modo, ¿cuántas maneras hay de obtener 10^7 ? y ¿10^8?

Resumen

En esta lección, desarrollamos una regla para multiplicar potencias de 10: multiplicar potencias de 10 corresponde a sumar los exponentes. Veamos esto multiplicando 10^510^2. Sabemos que 10^5 tiene cinco factores que son 10 y 10^2 tiene dos factores que son 10. Eso significa que 10^5 \boldcdot 10^2 tiene 7 factores que son 10. \displaystyle 10^5 \boldcdot 10^2 =(10 \boldcdot 10 \boldcdot 10 \boldcdot 10 \boldcdot 10) \boldcdot (10 \boldcdot 10)= 10^7. Esta regla también funcionará para otras potencias de 10. Así, por ejemplo, 10^{14} \boldcdot 10^{47} = 10^{61}.

Esta regla facilita la comprensión y el trabajo con expresiones que tienen exponentes.