Lesson 9
Usemos un transportador para medir ángulos
Warm-up: Verdadero o falso: Algo pasa con 45 (10 minutes)
Narrative
Launch
- Display one equation.
- “Hagan una señal cuando sepan si la ecuación es verdadera o no, y puedan explicar cómo lo saben” // “Give me a signal when you know whether the equation is true and can explain how you know.”
- 1 minute: quiet think time
Activity
- Share and record answers and strategy.
- Repeat with each statement.
Student Facing
En cada caso, decide si la afirmación es verdadera o falsa. Prepárate para explicar tu razonamiento.
- \(2 \times 45 = 6 \times 15\)
- \(4 \times 45 = 2 \times 90\)
- \(3 \times 45 = 180 - 90\)
- \(6 \times 45 = 45 + 90 + 135\)
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Some students may notice that it is handy to think in terms of \(2 \times 45\) because it would mean dealing with multiples of 90 rather than multiples of 45. Highlight their explanations.
- If no students decomposed expressions such as \(3 \times 45\), \(4 \times 45\), and \(6 \times 45\) into sums of \(1 \times 45\) and \(2 \times 45\), discuss how this could be done. (See sample responses.)
Activity 1: ¿Qué tan grande es un ángulo de $1^\circ$? (15 minutes)
Narrative
This activity develops an understanding of the degree as a unit used to measure angles and introduces students to the protractor.
By now students have encountered many angle measurements and have some intuitive awareness of the sizes relative to a full turn (\(360^\circ\)), half of a full turn (\(180^\circ\)), and a quarter of a full turn (\(90^\circ\)). In this activity, students learn that a \(1^\circ\) angle is \(\frac{1}{360}\) of a full turn and that an angle that is composed of \(n\) \(1^\circ\) angles has a measurement of \(n^ \circ\). For example, a \(7^\circ \) angle is made up of seven \(1^\circ\)angles.
Advances: Conversing, Reading
Required Materials
Materials to Gather
Launch
- Groups of 2
- 2 minutes: independent work time to find the fractions of a full turn
- Record students’ responses. Solicit some ideas on how large a \(1^\circ\) angle is. Emphasize that a \(1^\circ\) angle is \(\frac{1}{360}\)of a turn and that it’s the size of the angle formed by the sides of the pieces of the circle created if we cut a full circle into 360 equal parts.
- “Para medir ángulos en grados, podemos usar un transportador” // “To measure angles in degrees, we can use a protractor.” (Consider displaying different types of protractors.)
- Give each student a protractor.
- “Comparen esta herramienta con la que usaron en la lección anterior. ¿En qué se parecen? ¿En qué son diferentes?” // “Compare this tool to the one you used in the previous lesson. How are they the same? How are they different?” (They are both semi-circles. They both show angles like \(0^\circ\), \(30^\circ\), \(45^\circ\), and \(90^\circ\). The protractor is transparent or has a hole, while the paper version is solid. The protractor shows many more lines or tick marks and more numbers around the curve.)
Activity
- 2–3 minutes: group work time on the second set of questions.
- Monitor for students who look for structure to find the number of \(1^\circ\) increments on the protractor (for example, noticing that every group of ten \(1^\circ\) increments are marked and counting those instead of counting individual tick marks).
- Pause for a discussion. Make sure students see that a \(1^\circ\) angle on the protractor results when we draw rays through a pair of neighboring tick marks.
- 2–3 minutes: individual or group work time on the remaining questions
Student Facing
- Un rayo que da una vuelta entera alrededor de su extremo y vuelve a su punto de partida ha dado un giro completo o ha girado \(360^\circ\).
¿Qué fracción de un giro completo es cada una de las siguientes medidas de ángulos?
-
\(120^\circ\)
-
\(60^\circ\)
-
\(45^\circ\)
-
\(30^\circ\)
-
\(10^\circ\)
-
\(1^\circ\)
-
-
Tu profesor te dará un transportador, una herramienta para medir el número de grados de un ángulo.
- ¿Cómo se muestra \(1^\circ\) en el transportador?
- ¿Cuántas medidas de \(1^\circ\) ves?
-
Pusimos un transportador sin números sobre un ángulo.
-
El centro del transportador se alinea con el vértice del ángulo.
-
El borde recto del transportador se alinea con un rayo del ángulo.
¿Cuántos grados mide este ángulo? Explica cómo lo sabes.
-
-
Un ángulo contiene treinta ángulos de \(1^\circ\), como se muestra en la imagen. ¿Cuántos grados mide este ángulo?
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “Cuando los transportadores no mostraban números ni escalas, ¿cómo encontraron el tamaño de los dos ángulos?” // “How did you find out the size of the two angles when the protractors show no numbers or scales?” (We know that the turn from one tick mark to the next is \(1^\circ\). We can use the tick marks to count the number of \(1^\circ\) turns. We can imagine the tick marks split the angle into a number of \(1^\circ\) angles. We can count each \(1^\circ\)angle to find the measurement.)
Activity 2: Usemos un transportador (20 minutes)
Narrative
In this activity, students learn how to use a protractor. They align a protractor to the vertex and a ray of an angle so that its measurement can be read. The given angles are oriented in different ways, drawing students’ attention to the two sets of scales on a protractor. Students need to consider which set of numbers to pay attention to and think about a possible explanation for when or how to use each scale. Moreover, one of the scales is only marked in increments of 10 degrees so if students use this scale they need to reason carefully about the precise angle measure (MP6).
This activity uses MLR1 Stronger and Clearer Each Time. Advances: reading, writing.
Supports accessibility for: Conceptual Processing, Visual-Spatial Processing, Attention
Launch
- Groups of 2–4
Activity
- 5 minutes: independent work time
- 2–3 minutes: group discussion
- Monitor for students who find each measurement by:
- looking for the scale with a ray on \(0^\circ\) and counting up on that scale
- subtracting the two numbers (on the same scale) that the rays pass through
MLR1 Stronger and Clearer Each Time
- “Compartan su respuesta al último problema con su compañero. Por turnos, uno habla y el otro escucha. Si es su turno de hablar, compartan sus ideas y lo que han escrito hasta ese momento. Si es su turno de escuchar, hagan preguntas y comentarios que ayuden a su compañero a mejorar su trabajo” // “Share your response to the last problem with your partner. Take turns being the speaker and the listener. If you are the speaker, share your ideas and writing so far. If you are the listener, ask questions and give feedback to help your partner improve their work.”
- 3–5 minutes: partner discussion
- Repeat with 2–3 different partners.
- “Ajusten su borrador inicial basándose en los comentarios que les hicieron sus compañeros” // “Revise your initial draft based on the feedback you got from your partners.”
- 2–3 minutes: independent work time
Student Facing
- Estos son cuatro ángulos. Puede que hayas estimado sus tamaños antes. Se puso un transportador sobre cada ángulo. Mide el tamaño de cada ángulo, en grados.
-
-
Elena y Kiran miden un ángulo con un transportador. Elena dice que el ángulo mide \(80^\circ\). Kiran dice que el transportador muestra \(100^\circ\). ¿Por qué obtienen medidas diferentes? ¿Cuál es correcta? Explica cómo razonaste.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Select students who used different strategies to share their responses and reasoning.
- Display the image of Elena and Kiran’s angle. If no students mentioned that \(80^\circ\) is not possible because the angle clearly appears greater than a right angle (\(90^\circ\)), consider asking how Elena can use what she knows about right angles to think about her measurement.
Lesson Synthesis
Lesson Synthesis
“Hoy usamos ángulos de \(1^\circ\) y un transportador para medir el tamaño de los ángulos” // “Today, we used \(1^\circ\) angles and a protractor to measure the size of angles.”
“¿Qué saben sobre un ángulo de \(1^\circ\)?” // “What do you know about a \(1^\circ\) angle?” (It’s \(\frac{1}{360}\) of a full turn of a ray through a circle. It's a small angle compared to the other angles we have seen. It’s \(\frac{1}{180}\) of a half turn of a ray through a circle, like on a protractor.)
“¿Cómo pueden los ángulos de \(1^\circ\) decirnos el tamaño de otros ángulos?” // “How can \(1^\circ\) angles tell us the size of other angles?” (It’s a smaller angle, so we can use it to be more precise when we measure or compare angles. We can count or find the number of \(1^\circ\) angles in an angle to find its measurement.)
“¿Cómo sabríamos cuántos ángulos de \(1^\circ\) hay en otro ángulo?” // “How would we know how many \(1^\circ\) angles are in another angle?” (We can use a protractor, which is marked with 180 or 360 one-degree angles.)
Display:
“Vimos que un transportador tiene dos conjuntos de números. ¿Cómo saben cuál conjunto de números usar cuando miden un ángulo?” // “We saw that a protractor has two sets of numbers. How do you know which set of numbers to use when measuring an angle?” (Either set could be used, but it is easier to use the set that counts up from 0 rather than count down from 180.)“Tómense 1 o 2 minutos para agregar a su muro de palabras las palabras nuevas de la lección de hoy. Compartan sus palabras nuevas con un compañero y agreguen las nuevas ideas que surjan de su conversación” // “Take 1–2 minutes to add any new words from today’s lesson to your word wall. Share your new entries with a neighbor and add any new ideas you learn from your conversation.”
Cool-down: Mide los ángulos (5 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.