Lesson 2
Puntos, rectas, rayos y segmentos
Warm-up: Conversación numérica: Encontremos diferencias (10 minutes)
Narrative
Launch
- Display one expression.
- “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
- 1 minute: quiet think time
Activity
- Record answers and strategy.
- Keep expressions and work displayed.
- Repeat with each expression.
Student Facing
Encuentra mentalmente el valor de cada expresión.
- \(90 - 45\)
- \(270 - 45\)
- \(270 - 135\)
- \(360 - 135\)
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “¿Qué tienen en común estas expresiones?” // “What do these expressions have in common?” (The first number in each sequence is a multiple of 90.)
- “¿Cómo les ayudó esta observación —que los primeros números son todos múltiplos de 90— a encontrar el valor de las diferencias?” // “How did this observation—that the first numbers are all multiples of 90—help you find the value of the differences?”
- Consider asking:
- “¿Alguien puede expresar el razonamiento de _____ de otra forma?” // “Who can restate _____’s reasoning in a different way?”
- “¿Alguien usó la misma estrategia, pero la explicaría de otra forma?” // “Did anyone have the same strategy but would explain it differently?”
- “¿Alguien pensó en la expresión de otra forma?” // “Did anyone approach the expression in a different way?”
- “¿Alguien quiere agregar algo a la estrategia de _____?” // “Does anyone want to add on to _____’s strategy?”
Activity 1: Clasificación de tarjetas: ¿Quién soy? (20 minutes)
Narrative
In this activity, students are given cards that contain illustrations, definitions, and descriptions of points, lines, rays, and segments. They sort the cards into groups so that each group describes one of the four geometric figures.
When students sort the cards, they begin to connect the terms to their formal definitions and attributes (MP6).
Students may have trouble making sense of a point having “no size.” It is not necessary to discuss this in depth at this point, but during the synthesis, clarify that a point marks a location, and we need a symbol or a mark to represent it. The symbol or the mark has size, but the location itself doesn’t. It is important that students recognize that points make up lines even though we do not always identify them or label them with a dot. If needed, revisit the isometric grid from the previous activity as a reference.
Advances: Conversing.
Supports accessibility for: Memory, Social-Emotional Functioning
Required Materials
Required Preparation
- Create a set of cards from the blackline master for each group of 2–4 students.
Launch
- Groups of 2–4
- Give each group a set of cards from the blackline master and access to rulers or straightedges.
- Display the list of words and phrases collected during the previous lesson.
- “Usamos muchas palabras diferentes para describir figuras. Aprendimos cómo identificar puntos, rectas y segmentos de recta” // “We used many different words to describe figures. We learned how to identify points, lines, and line segments.”
- Ask students to act out each term with arms and hand gestures. (For example, “Muestren un punto usando solo sus brazos o sus manos, o ambos” // “Show me a point using only your arms or hands or both.” Students may makes fists to represent points or identify a spot along their arm as a point.)
- “En esta actividad, vamos a seguir definiendo puntos, rectas y segmentos de recta. También van a usar las tarjetas para definir otra figura, un rayo” // “We are going to continue to define points, lines, and line segments in this next activity. You are also going to use the cards to define another figure, a ray.”
Activity
- “Juntos, clasifiquen las tarjetas en cuatro grupos. Las tarjetas de cada grupo deben describir una figura geométrica en particular” // “Work together to sort the cards into four groups. The cards in each group should describe a particular geometric figure.”
- “Cuando su grupo termine, comparen sus resultados con los de otro grupo” // “When your group finishes, compare your results with another group’s.”
- “Dejen a un lado las tarjetas que fueron difíciles de ubicar. Prepárense para explicar por qué fueron más retadoras” // “Set aside cards that were hard to place. Be prepared to explain why they were more challenging.”
- Monitor for reasoning students use to sort cards. (Examples: Points are parts of lines so the description of a point will not use the word point in it. Line segments are parts of lines.)
Student Facing
Tu profesor te dará varias tarjetas que describen o representan puntos, rectas, rayos y segmentos de recta.
Clasifica las tarjetas en 4 grupos. Cada grupo debe representar las características de una de las figuras geométricas.
Haz una pausa para escuchar las instrucciones del profesor antes de completar el organizador gráfico.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Advancing Student Thinking
Activity Synthesis
- Invite students to discuss their sorting decisions.
- “¿Con cuáles tarjetas fue más largo el debate en grupo?” // “Which cards did you spend the most time debating as a group?” (“I have no size.” or “My length cannot be measured.”)
- “Puede ser complicado pensar en un punto. Con frecuencia se representa con una bolita o un círculo, que puede ser grande o pequeño. Pero el punto en sí mismo no puede ser grande o pequeño ya que solo marca una ubicación” // “A point might be tricky to think about. It is often represented by a dot or a circle, which could be large or small. But the point itself cannot be large or small since it only marks a location.”
- “¿Qué pasa con una recta? ¿Por qué no se puede medir?” // “What about a line? Why can it not be measured?” (It just keeps going in both directions so we don’t know where to start or stop measuring.)
- “¿Por qué un rayo tampoco se puede medir?” // “Why is a ray also impossible to measure?” (There is a starting point for measurement but there is no endpoint.)
- Consider displaying a graphic organizer (as shown in the activity statement) for all to see and placing the cards in the right boxes along the way.
- Ask students to write a sentence and draw an image to represent each figure in the graphic organizer in the student material.
Activity 2: Hagamos algunas figuras (15 minutes)
Narrative
The purpose of this activity is for students to use line segments and rays to draw familiar two-dimensional figures, letters, and numerals. Drawing on dot paper helps to reinforce the idea that segments have a defined endpoint on both ends and to distinguish rays from segments. As they describe and compare figures, students use vocabulary from the previous activity.
The activity also enables the teacher to hear the geometric vocabulary students are bringing from earlier grades. Consider displaying a chart with an image of each shape listed in the first problem during the launch.
This activity uses MLR7 Compare and Connect. Advances: representing, conversing.
Required Materials
Materials to Gather
Launch
- Groups of 2
- “Vamos a usar un campo de puntos para crear diferentes figuras” // “We are going to use the field of dots to create different figures.”
- Give students access to rulers or straightedges.
Activity
- 3–5 minutes: independent work time
MLR7 Compare and Connect
- “¿En qué se parecen sus figuras? ¿En qué son diferentes?” // “How are your shapes and figures the same? How are they different?”
- 3–5 minutes: partner discussion.
- As students discuss, consider asking:
- “¿Las figuras que dibujaron en la primera pregunta se parecen o son muy diferentes? Por ejemplo, ¿sus triángulos se parecen? ¿Y sus trapecios?” // “Are the shapes you drew for the first question the same or very different? For example, are your triangles alike? Your trapezoids?” (Some are taller and wider, and others are shorter and narrower.)
- “¿Cuántos segmentos de recta usaron para hacer sus letras o sus números?” // “How many line segments did you use to make your letters or numbers?” (3, 4, 5, 6)
- “¿Hicieron las mismas letras o los mismos números? Si es así, ¿tuvieron las mismas razones para escoger esas letras o esos números?” // “Did you make the same letters or numbers? If so, did you have the same reasons for choosing those letters or numbers?” (Some numbers have curves in them and are not as easy to draw.)
Student Facing
- Cada bolita de la cuadrícula representa un punto. Dibuja segmentos de recta para crear:
un triángulo
un romboun trapecio
un hexágonoun pentágono
un rectángulo -
Dibuja una combinación de rayos y segmentos de recta para crear:
una letra mayúscula
un número
una letra minúscula
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “¿Cuántos triángulos posibles podemos dibujar en el papel de puntos? ¿Cuántos trapecios posibles? ¿Y hexágonos?” // “How many possible triangles can we draw on the dot paper? How many possible trapezoids? Hexagons?” (There are countless ways to create and connect a specified number of line segments to make a certain type of shape.)
- “¿Alguien no comenzó o terminó sus segmentos de recta o sus rayos en un punto del papel de puntos? ¿Los resultados aún cuentan como segmentos o rayos?” // “Did anyone not start or end their line segments or rays on a dot? Do the results still count as segments or rays?” (Yes. A line segment stops at 2 endpoints, but the endpoints don’t have to be on a dot of the paper.)
- “¿Cómo diferenciaron los segmentos de recta y los rayos cuando dibujaron números y letras en la segunda pregunta?” // “How did you distinguish line segments and rays when drawing numbers and letters in the second question?” (Line segments stop on both ends. Rays go on on one end, the one marked with an arrow.)
Lesson Synthesis
Lesson Synthesis
Use student examples to reference during the synthesis questions, or invite students to illustrate their explanations for each question.
“Hoy aprendimos los significados de puntos, rectas, segmentos de recta y rayos, y usamos esas partes geométricas para crear dibujos” // “Today we learned the meanings of points, lines, line segments, and rays, and we used those geometric parts to create drawings.”
“¿Cómo podríamos explicarle a un estudiante nuevo en qué se diferencian las rectas, los rayos y los segmentos de recta?” // “How might we explain to a new student how lines, rays, and line segments are different?” (A line is straight and goes on forever in both directions. A line segment is a part of a line that ends on both ends. A ray is also a part of a line, but it goes on forever in one direction and ends in the other direction. We can use drawings to show how they are different.)
“¿Los puntos en el papel que usamos hoy son los únicos puntos que puede haber en las figuras?” // “Are the dots on the paper we used today the only points that could be in the shapes and figures?” (No. Each shape we drew had many points, not just the ones that were already there.)
Draw a capital A. “La punta de la letra A y los extremos del segmento horizontal no tienen ningún punto. ¿Podemos llamar a esas partes de la ‘A’ segmentos de recta?” // “The tip of the letter A and the ends of the horizontal segment don’t have any dots. Can we call these parts of the ‘A’ line segments?” (Yes. There doesn’t have to be dots at the end. They have a starting point and an endpoint. Dots are just what we use to label points.)
Draw a capital L. “¿La esquina izquierda de la parte de abajo de la letra L es un punto? ¿Por qué sí o por qué no?” // “Is the bottom left corner of the letter L a point? Why or why not?” (Yes. A point is a location. It doesn’t have to be marked by a dot. Any location on the line segments that make up the L are points on that letter.)
Cool-down: Verdadero o falso: ¿Cuál es el punto? (5 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.