Lesson 10
Rectas perpendiculares y medidas de ángulos
Warm-up: Conversación numérica: Cocientes (10 minutes)
Narrative
Launch
- Display one expression.
- “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
- 1 minute: quiet think time
Activity
- Record answers and strategy.
- Keep expressions and work displayed.
- Repeat with each expression.
Student Facing
Encuentra mentalmente el valor de cada expresión.
- \(180 \div 2\)
- \(180 \div 4\)
- \(360 \div 8\)
- \(360 \div 16\)
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “¿Cómo se relacionan las expresiones?” // “How are the expressions related?”
- “¿Cómo los ayudó encontrar el valor de una expresión a encontrar el valor de la siguiente expresión?” // “How did finding the value of one expression help you find the value of the next expression?”
- Consider asking:
- “¿Alguien puede expresar el razonamiento de _____ de otra forma?” // “Who can restate _____’s reasoning in a different way?”
- “¿Alguien usó la misma estrategia, pero la explicaría de otra forma?” // “Did anyone have the same strategy but would explain it differently?”
- “¿Alguien pensó en la expresión de otra forma?” // “Did anyone approach the expression in a different way?”
- “¿Alguien quiere agregar algo a la estrategia de _____?” // “Does anyone want to add on to _____’s strategy?”
Activity 1: Ángulos aquí, allá y en todas partes (15 minutes)
Narrative
In previous lessons, students learned to read the measurement of an angle with a protractor already in position. In this activity, students practice using a protractor to measure angles. They decide where to place the tool, how to align it with the vertex and rays of the angle, and which set of numbers on the protractor to use.
Some of the figures in the activity explicitly show angles formed by two rays. In others, students are asked to find and measure the angles within polygons. In both cases, students may find it necessary to extend one or both rays of an angle so that it can be measured more effectively or precisely (MP6). Doing so reinforces the idea that the size of an angle is not determined by the length of the segments that frame it, but by the rays that compose the angle.
Advances: Listening, Speaking
Required Materials
Materials to Gather
Launch
- Groups of 2
- Give each student a protractor and access to rulers or straightedges.
Activity
- 5 minutes: independent work time
- 1–2 minutes: partner discussion
- Monitor for students who:
- align the rays of the angle to tick marks on the protractor and count from one ray to the other
- don’t align either ray of an angle to \(0^\circ\) or \(180^\circ\) on the protractor and instead find the difference of the numbers where the two rays land on the protractor
- always align one ray of an angle with the \(0^\circ\) or \(180^\circ\) line on the protractor and always read from the scale that starts with \(0^\circ\)
Student Facing
-
Usa un transportador para encontrar el valor de la medida de cada ángulo, en grados.
- Usa un transportador para medir los ángulos que están marcados en cada figura.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Advancing Student Thinking
Students may carefully line up rays on the protractor, but find angle measurements that are unreasonable. Ask students to explain how they used the protractor to measure. Consider asking:
- “Teniendo en cuenta los ángulos que has medido en lecciones anteriores, ¿tiene sentido que la medida de este ángulo sea _____ grados? ¿Por qué sí o por qué no?” // “Based on the angles you have measured in previous lessons, does _____ degrees make sense as the measure of this angle? Why or why not?”
- “¿De qué otra manera puedes usar el transportador para revisar tu medida?” // “What is another way you could use the protractor to check your measurement?”
Activity Synthesis
- Display the angles and figures. Invite previously identified students to share their methods for measuring angles, in the order shown in the monitoring notes.
- “¿Cuáles son algunas ventajas de alinear un rayo de un ángulo con el \(0^\circ\) del transportador?” // “What are some benefits of aligning one ray of an angle to \(0^\circ\) on the protractor?” (The measurement can be identified right away: it’s the number where the second ray lands on the protractor. Aligning the first ray to a non-zero number means having to count or subtract two numbers before finding the measurement.)
- “¿En qué fue parecido medir el segundo grupo de ángulos a medir el primer grupo de ángulos?” // “How was measuring the second set of angles like measuring the first set of angles?” (They both involve aligning the center point of a protractor to the vertex of the angle, and matching the \(0^\circ\) line on the protractor to one ray or segment of the angle. It can be helpful to extend one or both lines framing the angle.)
- “¿En qué fue diferente a medir el primer grupo?” // “How was it different than measuring the first set?” (The two-dimensional shapes have other segments and angles nearby, so more attention was needed when placing the protractor and reading the measurement.)
- “¿Cómo pueden saber si su medida fue razonable? ¿Cómo pueden asegurarse de que sus medidas tienen sentido?” // “How can you tell if your measurement was reasonable? How can you make sure your measurements make sense?” (Compare them against a familiar angle like \(90^\circ\). If an angle looks larger than a right angle, it can’t be less than \(90^\circ\).)
Activity 2: Un reto de doblar (20 minutes)
Narrative
In this activity, students fold paper to form right angles and learn that intersecting lines that form \(90^\circ\) angles are perpendicular lines. They then identify perpendicular segments in two-dimensional figures and explain how they know the segments are perpendicular.
To create four right angles that share the same vertex by folding generally means making two folds through the same point. The first fold, which can be done in any way (as long as it goes through point \(P\), in this case), creates two straight angles. The second involves folding through the point again such that the edges formed by the crease of the first fold match up exactly, creating two equal halves or two \(90^\circ\) angles.
While students have experience with folding paper to partition a shape or an angle, some may need support in folding precisely. Consider providing a straightedge to facilitate the folding.
This activity uses MLR2 Collect and Display. Advances: conversing, reading, writing
Supports accessibility for: Visual-Spatial Processing, Memory, Attention
Required Materials
Materials to Gather
Required Preparation
- Prepare at least 2 pieces of paper (or sticky notes) for each student.
Launch
- Groups of 2–4
- Give each student 2 pieces of paper and colored pencils. Provide access to straightedges or rulers, in case requested.
- Read the opening prompts and the first question.
- “¿Qué creen que hizo Lin con su hoja? Marquen un punto en una hoja de papel y traten de doblarla como podría haberlo hecho Lin” // “What do you think Lin did with her paper? Mark a point on a piece of paper and try folding it as Lin might have done.”
- 2–3 minutes: quiet think time on the first problem
- Pause for a discussion. Invite a couple of students to share how they think Lin met the challenge.
Activity
- 6–7 minutes: group work on the remaining questions
- Circulate, listen for, and collect the language students use to define perpendicular lines.
- Record students’ words and phrases on a visual display and update it throughout the lesson.
- Monitor for students who:
- reason that their folded lines form right angles because the first fold makes two \(180^\circ\) angles through the point and the second fold splits each into halves, making \(90^\circ\) angles
- use a protractor (or a square corner) to verify perpendicularity of the sides of shapes in the last problem (rather than relying on appearance)
Student Facing
Tyler le puso un reto a Lin: “Sin usar un transportador, dibuja cuatro ángulos de \(90^\circ\). Todos los ángulos tienen su vértice en el punto \(P\)”.
Lin dobló su hoja dos veces, asegurándose de que cada doblez pasara por el punto \(P\). Después, trazó los pliegues.
- Tu profesor te dará una hoja de papel. Dibuja un punto en ella. Después, muestra cómo Lin podría resolver el reto.
- Cuando Lin dobló la hoja, los pliegues formaron un par de rectas perpendiculares. ¿Qué piensas que significa “rectas perpendiculares”?
- Usa el método de Lin para hacer un nuevo par de rectas perpendiculares que pasen por el mismo punto. Traza los pliegues con un color diferente. Prepárate para explicar cómo sabes que las rectas que hiciste son perpendiculares.
-
¿Cuáles figuras tienen lados que son perpendiculares entre sí?
Marca los lados perpendiculares. Prepárate para explicar cómo sabes que los lados son perpendiculares.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Advancing Student Thinking
When making their second fold, students may not align the two edges formed by the crease of the first fold, resulting in a pair of angles of one size and another pair of a different size (instead of four right angles). Consider asking: “¿Cómo podrías ajustar lo que doblaste para crear dos ángulos iguales?” // “How might you adjust your folding to create two equal angles?”
Students may say they do not see perpendicular sides in the last problem because, unlike the intersecting lines in the folded paper, the sides of the shapes do not cross. Consider asking:
- “¿Dónde se unen los lados? ¿Qué observas acerca del lugar donde se unen los lados en esta figura?” // “Where do the sides meet? What do you notice about where the sides meet in this figure?”
- “¿Qué pasa si extiendes cada lado para mostrar la recta de la que hace parte cada segmento? ¿Qué observas?” // “What if you extend each side to show the line that each segment is a part of? What do you notice?”
Activity Synthesis
- “¿Qué afirmación podemos escribir para explicarle a otro estudiante qué son las rectas perpendiculares?” // “What statement could we write to explain to another student what perpendicular lines are?” (Lines that intersect and create right angles.)
- Remind students that they can use words or phrases from their personal word walls in their responses.
- Invite students to share the perpendicular lines they created by folding.
- “¿Cómo pueden estar seguros de que los pliegues que hicieron al doblar son perpendiculares o forman ángulos de \(90^\circ\)?” // “How can you be sure that the creases from your folding are perpendicular or created \(90^\circ\) angles?” (My first fold makes two \(180^\circ\) angles. My second fold splits each of those into two equal angles, so each one must be \(90^\circ\). We can measure each angle with a protractor.)
- “En el último problema, ¿cómo supieron cuáles figuras tenían lados perpendiculares?” // “In the last problem, how did you know which shapes have perpendicular sides?” (By measuring the angles with a protractor, or by comparing them with a square corner.)
Lesson Synthesis
Lesson Synthesis
“¿Su descripción de cómo medir el ángulo \(g\) sería diferente a la del ángulo \(f\)?” // “Would your description for measuring angle \(g\) be different from that for angle \(f\)?”
“¿Hay rectas perpendiculares en alguno de los diagramas? ¿Cómo podemos saberlo?” // “Are there any perpendicular lines in either of the diagrams? How can we tell?” (No, none of the angles are right angles.)
“Tómense 1 o 2 minutos para agregar a su muro de palabras las palabras nuevas de la lección de hoy. Compartan sus palabras nuevas con un compañero y agreguen las nuevas ideas que surjan de la conversación” // “Take 1–2 minutes to add the new words from today’s lesson to your word wall. Share your new entries with a neighbor and add any new ideas you learn from your conversation.”
Cool-down: Mide ángulos (5 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.