Lesson 15

Razonemos sobre ángulos (parte 2)

Warm-up: Cuántos ves: Ángulos obtusos (10 minutes)

Narrative

In this warm-up, students practice identifying obtuse angles in an image. They may, for instance, rely on the symmetry of the figure or on a grouping strategy, or otherwise scan the figure in a methodical way.

Launch

  • Groups of 2
  • “¿Cuántos ángulos ven? ¿Cómo lo saben?, ¿qué ven?” // “How many angles do you see? How do you see them?”
  • Display the image.
  • 1 minute: quiet think time

Activity

  • Display the image.
  • “Discutan con su pareja lo que pensaron” // “Discuss your thinking with your partner.”
  • 1 minute: partner discussion
  • Record responses.

Student Facing

¿Cuántos ángulos ves en el corazón de papel doblado?

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Cómo se aseguraron de haber tenido en cuenta todos los ángulos?” // “How did you make sure all the angles are accounted for?”(I put a mark through them or numbered them.)
  • “¿Cuántos ángulos obtusos hay en esta imagen?” // “How many obtuse angles are in this image?” (10)
  • Label each obtuse angle with reasoning from students.
  • Consider asking:
    • “¿Alguien puede expresar con otras palabras la manera en la que _____ vio los ángulos?” // “Who can restate in different words the way _____ saw the angles?”
    • “¿Alguien vio los ángulos de la misma manera, pero lo explicaría de otra forma?” // “Did anyone see the angles the same way but would explain it differently?”
    • “¿Alguien quiere compartir otra observación sobre la manera en la que _____ vio los ángulos?” // “Does anyone want to add an observation to the way _____ saw the angles?”

Activity 1: Ángulos sombreados y sin sombrear (15 minutes)

Narrative

Previously, students found numerous angle sizes by reasoning and without using a protractor. They have done so with problems with and without context. In this activity, students consolidate various skills and understandings gained in the unit and apply them to solve problems that are more abstract and complex. They rely, in particular, on their knowledge of right angles and straight angles to reason about unknown measurements. (Students may need a reminder that an angle marked with a small square is a right angle.)

The angles with unknown measurements are shaded but not labeled, motivating students to consider representing them (or their values) with symbols or letters for easier reference. Students may also choose to write equations to show how they are thinking about the problems.

When students use the fact that angles making a line add up to \(180^\circ\) and that angles making a right angle add up to \(90^\circ\) they make use of structure to find the unknown angle measures (MP7).

MLR8 Discussion Supports. Display sentence frames to support small-group discussion: “Primero, yo _____ porque . . .” // “First, I _____ because . . .”, “Observé _____ entonces yo . . .” // “I noticed _____ so I . . .”, and “¿Por qué tú . . .?” // “Why did you . . . ?”
Advances: Conversing, Representing
Representation: Internalize Comprehension. Synthesis: Invite students to identify what they had to look for in the pictures to solve each problem. Display the sentence frame: “La próxima vez que esté encontrando la medida de un ángulo sin un transportador, buscaré . . .” // “The next time I am finding the measurement of an angle without a protractor, I will look for . . . .“ Record responses and invite students to refer to them in the next activity.
Supports accessibility for: Conceptual Processing, Memory, Attention

Launch

  • Groups of 2

Activity

  • 5 minutes: independent work time
  • 2 minutes: partner discussion
  • Monitor for students who:
    • use symbols or letters to represent unknown angles
    • write equations to help them reason about the angle measurements

Student Facing

Encuentra la medida de los ángulos que están sombreados. Muestra cómo lo sabes.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

To find the size of the shaded acute angle in the last diagram, students will need to reason indirectly by first finding the size of the shaded obtuse angle. (At this stage they are not expected to know that vertical angles are always equal.) Students who try to find the measurement of the acute angle first will likely get stuck. Consider asking students what they know about straight angles and how they can use what they know to pick which unknown angle to find first.

Activity Synthesis

  • Display the angles. Select students to share their responses. Record and display their reasoning.
  • Highlight equations that illuminate the relationship between the known angle, the unknown angle, and the reference angle (\(90^\circ\), \(180^\circ\), or \(360^\circ\)). For instance: \(62 + p = 90\), \(71 + r + 90 = 180\), \(x + 154 = 180\), and so on.
  • Label the diagrams with letters or symbols as needed to facilitate equation writing.
  • When discussing the last question, highlight that finding unknown values sometimes involve multiple steps, and some steps may need to happen before others.

Activity 2: Falta de información: Una gran cantidad de ángulos (20 minutes)

Narrative

In this Info Gap activity, students solve abstract multi-step problems involving an arrangement of angles with several unknown measurements. By now students have the knowledge and skills to find each unknown value, but the complexity of the diagram and the Info Gap structure demand that students carefully make sense of the visual information and look for entry points for solving the problems. They need to determine what information is necessary, ask for it, and persevere if their initial requests do not yield the information they need (MP1). The process also prompts them to refine the language they use and ask increasingly more precise questions until they get useful input (MP6).

Here is an image of the cards for reference:

Required Materials

Materials to Copy

  • Info Gap: Whole Bunch of Angles, Spanish

Required Preparation

  • Create a set of cards from the blackline master for each group of 2.

Launch

  • Groups of 2

MLR4 Information Gap

  • Display the task statement, which shows a diagram of the Info Gap structure.
  • 1–2 minutes: quiet think time
  • Read the steps of the routine aloud.
  • “Yo les voy a dar una tarjeta de problema o una tarjeta de datos. Lean su tarjeta en silencio. No se la lean ni se la muestren a su compañero” // “I will give you either a problem card or a data card. Silently read your card. Do not read or show your card to your partner.”
  • Distribute the cards.
  • “El diagrama no está dibujado con precisión, así que no les recomiendo usar un transportador para medir” // “The diagram is not drawn accurately, so using a protractor to measure is not recommended.”
  • 1–2 minutes: quiet think time
  • Remind students that after the person with the problem card asks for a piece of information, the person with the data card should respond with “¿Por qué necesitas saber ________?” // “Why do you need to know (restate the information requested)?”

Activity

  • 5 minutes: partner work time
  • After students solve the first problem, distribute the next set of cards. Students switch roles and repeat the process with Problem Card 2 and Data Card 2.

Student Facing

Tu profesor te dará una tarjeta de problema o una tarjeta de datos. No se la muestres ni se la leas a tu compañero.

Information Gap routine directions for problem card student and data card student.

Haz una pausa aquí para que tu profesor pueda revisar tu trabajo. Pídele al profesor un nuevo grupo de tarjetas. Intercambia roles con tu compañero y repite la actividad.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

Some students may be overwhelmed by the visual information. Ask them to try isolating a part of the diagram at a time, covering other parts that are not immediately relevant.

Activity Synthesis

  • Select students to share how they found each angle measure. Record their reasoning and highlight equations that clearly show the relationships between angles.
  • “¿Para cuáles ángulos fue fácil encontrar sus medidas? ¿Qué hizo que fuera fácil?” // “Which angle measurements were easy to find? What made them easy?” (Sample response: \(p\) and \(d\), because it was fairly easy to see that each of them and a neighboring angle make a straight angle.)
  • “¿Cuáles fueron un poco más complicados? ¿Por qué?” // “Which ones were a bit more involved? Why?” (Sample response: \(e\), because there are 5 angles that meet at that point. We needed to find \(a\) or \(d\) before finding \(e\).)

Lesson Synthesis

Lesson Synthesis

“Hoy resolvimos problemas sobre ángulos en los que necesitamos varios pasos, todos sin medir con un transportador” // “Today we solved angle problems involving multiple steps, all without measuring with a protractor.”

Display the two diagrams on the problem cards of the Info Gap activity. Label the angles whose measurements are given on the data cards. (\(128^\circ\) for \(u\), \(143^\circ\) for \(c\), \(79^\circ\) for \(s\), and \(37^\circ\) for \(a\).)

Focus the discussion on how equations could be used to represent students’ reasoning process and to help find the unknown angle measurements.

“¿Qué ecuaciones podemos escribir que nos ayuden a encontrar el valor de \(p\)? ¿Y de \(d\)?” // “What equations can we write to help us find the value of \(p\)? What about \(d\)?” (See sample equations in student responses.)

Cool-down: De corazón a corazón (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.

Student Section Summary

Student Facing

Antes en la unidad, aprendimos que un ángulo recto mide exactamente \(90^\circ\). En esta sección, aprendimos otras formas de nombrar ángulos basándonos en sus medidas.

  • Los ángulos agudos miden menos de 90º.

  • Los ángulos obtusos miden más de 90º, pero menos de 180º.

  • Los ángulos llanos miden exactamente 180º.

También resolvimos problemas sobre ángulos. Por ejemplo, si dos ángulos forman un ángulo recto o un ángulo llano, podemos usar el tamaño de un ángulo para encontrar el otro.

El ángulo sombreado debe medir \(28^\circ\) porque forma un ángulo recto cuando se combina con el ángulo de \(62^\circ\).

Este es otro ejemplo. Como sabemos que un giro completo mide \(360^\circ\), concluimos que la manecilla larga de un reloj gira:

  • un ángulo de \(360^\circ\) cada hora
  • un ángulo de \(180^\circ\) cada media hora
  • un ángulo de \(90^\circ\) cada 15 minutos
  • un ángulo de \(60^\circ\) cada 10 minutos