Lesson 7

Fracciones como sumas

Warm-up: Conteo grupal: Tres cuartos a la vez (10 minutes)

Narrative

The purpose of this Choral Count is to invite students to practice counting by \(\frac{3}{4}\) and notice patterns in the count. The patterns they recognize here will be helpful when students decompose fractions into sums of \(\frac{3}{4}\)s in a problem later in the lesson. The exercise also draws students’ attention to multiples of \(\frac{3}{4}\) that are equivalent to whole numbers, which will be helpful as students compose and decompose mixed numbers.

Launch

  • “Cuenten de \(\frac{3}{4}\) en \(\frac{3}{4}\), empezando en \(\frac{3}{4}\)” // “Count by \(\frac{3}{4}\), starting at \(\frac{3}{4}\).”
  • Record as students count.
  • Stop counting and recording at \(\frac{48}{4}\).

Activity

  • “¿Qué patrones ven?” // “What patterns do you see?” (Sample responses:
    • The numerator is increasing by 3 each time.
    • The numerators are multiples of 3.
    • In every fourth fraction in the list, the numerator is a multiple of 4.)
  • 1–2 minutes: quiet think time
  • Record responses.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Cuáles de estas fracciones son equivalentes a números enteros?” // “Which of these fractions are equivalent to whole numbers?” (\(\frac{12}{4}, \frac{24}{4}, \frac{36}{4}, \frac{48}{4}\))
  • “¿A qué números enteros son equivalentes?” // “To what whole numbers are they equivalent?” (3, 6, 9, 12)
  • “¿Por qué piensan que ocurren estos patrones?” // “Why do you think these patterns are happening?” (The number of parts and the size of each part being added stay the same each time, so the numerator is always increasing by 3 and the denominator always staying the same.)

Activity 1: Sopa de cebada (20 minutes)

Narrative

Previously, students considered non-unit fractions in terms of equal groups of unit fractions or as a product of a unit fraction and a whole number. This activity prompts students to think about non-unit fractions as being sums of other fractions. The given context—about measuring fractional amounts using measuring cups of certain sizes—allows students to continue thinking in terms of equal groups, but also invites them to consider a fractional quantity as a sum of two or more fractions with the same denominator. For instance, students may see \(\frac{5}{4}\) as 5 groups of \(\frac{1}{4}\) or as \(5 \times \frac{1}{4}\), but they may also see that \(\frac{5}{4}\) is equal to \(\frac{3}{4} + \frac{1}{4} + \frac{1}{4}\). Students record such a decomposition as an equation. When students connect the quantities in the story problem to an equation, they reason abstractly and quantitatively (MP2).

Students may not be familiar with the use of measuring cups. Consider demonstrating how to use a 1-cup measuring cup to obtain different whole numbers of cups. 

Required Materials

Materials to Gather

Required Preparation

  • Gather \(\frac{1}{4}\)-cup and \(\frac{3}{4}\)-cup measuring cups, if available.

Launch

  • Groups of 2
  • “Hoy vamos a ver la receta de una sopa” // “Today we’ll look at a soup recipe.”
  • Ask students to share with a partner:
    • “¿Cuál es su sopa favorita?” // “What is your favorite soup?”
    • “¿Qué ingredientes tiene su sopa favorita?” // “What is in your favorite soup?”
    • “Si estuvieran escribiendo la receta de esta sopa, ¿qué diría la receta?” // “If you were writing a recipe for this soup, what would it say?”
  • 2 minutes: partner discussion
  • 1 minute: share responses
  • “Veamos una receta de sopa de cebada. Un familiar de Lin escribió las cantidades de la receta usando cuartos para que fuera más fácil medirlas” // “Let’s look at a recipe for barley soup. Someone in Lin's family wrote the amounts in the recipe in fourths to make measuring easier.”
  • If possible, show examples of uncooked barley and make \(\frac{1}{4}\)-cup and \(\frac{3}{4}\)-cup measuring cups available.

Activity

  • “Trabajen individualmente durante unos minutos. Luego, compartan sus respuestas con su compañero” // “Work independently on the task for a few minutes. Then, share your responses with your partner.”
  • 6–7 minutes: independent work time
  • Monitor for students who express the amounts in terms of:
    • number of times a measuring cup is filled
    • products of a unit fraction and a whole number
    • sums of unit fractions
    • sums of unit and non-unit fractions
  • 3–4 minutes: partner discussion

Student Facing

Lin está aprendiendo a preparar sopa de cebada usando una receta familiar. Estos son algunos ingredientes de la receta:

  • \(\frac{3}{4}\) de taza de cebada
  • \(\frac{5}{4}\) tazas de apio picado
  • \(\frac{6}{4}\) tazas de zanahorias picadas
  • 1 taza de cebollas picadas
  • \(2\frac{1}{4}\) tazas de caldo de verduras
2 stacked measuring cups labeled one fourth cup and three fourths cup.
  1. Lin solo tiene una taza medidora que sirve para medir \(\frac{1}{4}\) de taza. Muestra cómo puede usar la taza medidora para medir la cantidad correcta de cada ingrediente.

    • Cebada:
    • Apio:
    • Zanahorias:
    • Cebollas:
    • Caldo de verduras:
  2. Más tarde, Lin encontró una taza medidora que sirve para medir \(\frac{3}{4}\) de taza. Muestra cómo puede usar las dos tazas medidoras para medir la cantidad correcta de cada ingrediente.

    • Cebada:
    • Apio:
    • Zanahorias:
    • Cebollas:
    • Caldo de verduras:

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students create drawings to show how they would obtain the correct quantities, ask: “¿Cómo muestran tus dibujos lo que Lin podría hacer para obtener las cantidades correctas?” // “How do your drawings show what Lin could do to get the right amounts?” and “¿Cómo podrías usar expresiones para mostrar la misma información?” // “How could you use expressions to show the same information?”

Activity Synthesis

  • Select students to share their responses in the order shown in the activity notes (from informal or concrete to formal or symbolic, from multiplication to addition).
  • Record the different ways of expressing the quantities in the recipe.
  • Consider drawing diagrams and annotating them to help students relate the expressions and the quantities.
  • Highlight that each quantity can be written as a product of a whole number and a unit fraction, but it can also be written as a sum of smaller fractions. For example:
    • Barley: \(3 \times \frac{1}{4}\), or \(\frac{1}{4} + \frac{1}{4} + \frac{1}{4}\)
      Tape diagram
    • Broth: \(9 \times \frac{1}{4}\) or \(3 \times \frac{3}{4}\), or \(\frac{3}{4} + \frac{3}{4} + \frac{3}{4}\)
      Tape diagram

Activity 2: Sumas de quintos y sumas de tercios (15 minutes)

Narrative

In the previous activity, students saw that a fraction can be decomposed into a sum of fractions with the same denominator and that it can be done in more than one way. In this activity, they record such decompositions as equations. The last question prompts students to consider whether any fraction can be written as a sum of smaller fractions with the same denominator. Students see that only non-unit fractions (with a numerator greater than 1) can be decomposed that way. Students observe regularity in repeated reasoning as they decompose the numerator, 9, into different parts while the denominator in all cases is 5 (MP8).

MLR7 Compare and Connect. Synthesis: Lead a discussion comparing, contrasting, and connecting the different representations. Ask, “¿Cómo muestran estas representaciones la misma información?” // “How do these different representations show the same information?”, “¿Qué tienen en común estas representaciones?” // “What do each of these representations have in common?”, and “¿En qué son diferentes?” // “How were they different?”
Advances: Representing, Conversing
Action and Expression: Develop Expression and Communication. Provide access to pre-formatted tape diagrams and colored pencils. Invite students to use different colors for each addend.
Supports accessibility for: Conceptual Processing, Visual-Spatial Processing, Memory

Launch

  • “Antes, vimos varias formas de descomponer fracciones en cuartos y escribirlas como sumas de fracciones más pequeñas” // “Earlier, we saw different ways to decompose fractions in fourths and write them as sums of smaller fractions.”
  • “¿Cómo podemos escribir la fracción \(\frac{9}{5}\) como una suma de fracciones unitarias?” // “How can we write the fraction \(\frac{9}{5}\) as a sum of unit fractions?” (\(\frac{9}{5} = \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5}\))
  • “Descompongamos \(\frac{9}{5}\) en sumas de otros quintos y \(\frac{4}{3}\) en sumas de tercios” // “Let’s decompose \(\frac{9}{5}\) into sums of other fifths and \(\frac{4}{3}\) into sums of thirds.“

Activity

  • “Tómense unos minutos para completar la actividad en silencio. Luego, compartan sus respuestas con su compañero” // “Take a few quiet minutes to complete the activity. Then, share your responses with your partner.”
  • 5–6 minutes: independent work time
  • 3–4 minutes: partner discussion
  • Monitor for different explanations students offer for the last question.

Student Facing

  1. Escribe distintas combinaciones de quintos que sumen \(\frac{9}{5}\).

    1. \(\frac{9}{5} = \underline{\hspace{.5in}} + \underline{\hspace{.5in}} + \underline{\hspace{.5in}} + \underline{\hspace{.5in}} + \underline{\hspace{.5in}}\)
    2. \(\frac{9}{5} = \underline{\hspace{.5in}} + \underline{\hspace{.5in}} + \underline{\hspace{.5in}} + \underline{\hspace{.5in}}\)
    3. \(\frac{9}{5} = \underline{\hspace{.5in}} + \underline{\hspace{.5in}} + \underline{\hspace{.5in}}\)
    4. \(\frac{9}{5} = \underline{\hspace{.5in}} + \underline{\hspace{.5in}}\)
  2. Escribe distintas combinaciones de tercios que sumen \(\frac{4}{3}\). ¿Cuántas combinaciones se te ocurren? Escribe una ecuación para cada combinación.
  3. ¿Es posible escribir cualquier fracción que tenga un denominador de 5 como una suma de otros quintos? Explica o muestra tu razonamiento.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Invite students to share their equations. Display or record them for all to see.
  • Next, discuss students' responses to the last question. Select students with different explanations to share their reasoning.
  • If not mentioned by students, highlight that fractions with a numerator of 1 (unit fractions) cannot be further decomposed into smaller fractions with the same denominator because it is already the smallest fractional part. Other fractions with a numerator other than 1 (non-unit fractions) can be decomposed into fractions with the same denominator.

Lesson Synthesis

Lesson Synthesis

“En lecciones anteriores, aprendimos que las fracciones que tienen numerador mayor que 1 se pueden escribir como productos. Hoy aprendimos que estas fracciones también se pueden escribir como sumas” // “In earlier lessons, we saw that a fraction whose numerator is greater than 1 can be written as products. Today, we saw that a fraction whose numerator is greater than 1 can also be seen as sums.”

Display:

\(\frac{4}{3} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}\)
\(\frac{4}{3} = \frac{2}{3} + \frac{2}{3}\)
\(\frac{4}{3} = \frac{1}{3} + \frac{3}{3}\)
\(\frac{4}{3} = \frac{2}{3} + \frac{1}{3} + \frac{1}{3}\)

“Comparen estas dos formas de pensar en fracciones. ¿En qué se parecen?” // “Compare these two ways of thinking about fractions. How are they alike?” (They both involve writing a fraction in terms of smaller parts or smaller fractions. The smaller fractions all have the same denominator.)

“¿En qué son diferentes?” // “How are they different?” (When writing a fraction as a product, we think of it in terms of equal groups. When writing it as a sum, we decompose it into smaller groups, but they may not be the same size.)

“¿De qué formas se puede descomponer \(\frac{13}{6}\) y escribirla como una suma?” // “What are some ways to decompose \(\frac{13}{6}\) and write it as a sum?” (Sample responses:\(\frac{10}{6} + \frac{3}{6}\)\(\frac{12}{6} +\frac{1}{6}\)\(\frac{7}{6} +\frac{1}{6}\))

Cool-down: Haz que sumen $\frac{7}{4}$ (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.