Lesson 13

Medidas fraccionarias en diagramas de puntos

Warm-up: Observa y pregúntate: ¿Cuál regla? (10 minutes)

Narrative

The purpose of this warm-up is to elicit ideas that students have about rulers and measurements of \(\frac{1}{2}\), \(\frac{1}{4}\), and \(\frac{1}{8}\), which will be useful when students measure objects and generate and analyze line plots in a later activity. While students may notice and wonder many things about the images, focus the discussion on how to name the fractional measures in each image and the progression of the different levels of precision.

Launch

  • Groups of 2
  • Display the image.
  • “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?”
  • 1 minute: quiet think time

Activity

  • “Discutan con su pareja lo que pensaron” // “Discuss your thinking with your partner.”
  • 1 minute: partner discussion
  • Share and record responses.

Student Facing

¿Qué observas? ¿Qué te preguntas?

images of 4 rulers measuring same crayon. Ruler A, scaled by whole inches. Ruler B, scaled by half inches. Ruler C, scaled by fourths of an inch. Ruler D, scaled by eighths of an inch. Crayon almost 2 and 1 half inches.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Por qué la medida del crayón cambia en cada nueva imagen?” // “Why does the crayon measurement change each time?” (Sample responses: The crayon is not changing. The measurements on the ruler are becoming more precise. We’re using smaller and smaller pieces to measure the crayon.)
  • “¿Qué creen que representan las marcas de cada regla?” // “What do you think the tick marks on each ruler represent?” (They represent inches, halves, fourths, and eighths of an inch.)
  • “¿Qué cosas medirían con la primera regla? ¿Qué cosas medirían con la última regla? ¿Por qué?” // “What are some things that you would measure with the first ruler? What about things you would measure with the last ruler? Why might that be?” (Sample response: I would use the first ruler if the measurement doesn’t need to be exact and use the last ruler if it needs to be pretty exact.)

Activity 1: Midamos al $\frac{1}{4}$ y al $\frac{1}{8}$ de pulgada más cercano [OPTIONAL] (25 minutes)

Narrative

In this activity, students first measure colored pencils to the nearest \(\frac{1}{4}\) inch, collect a set of data in a table, and then plot them on a line plot. Then, they measure the colored pencils again, but this time to the nearest \(\frac{1}{8}\) inch. They plot their data on a new number line and attend to a greater level of precision as they do so. Students then reflect on the difference in the measuring process and in the measurements on the same set of pencils. Students attend to precision when they measure the pencils to the appropriate fractional unit (MP6).

Required Materials

Materials to Gather

Required Preparation

  • Each student needs a used colored pencil.

Launch

  • Groups of 5
  • Give a used colored pencil to each student.
  • Prepare a number line on a poster and display it for students to see. Label the tick marks with whole numbers.
  • “Si quisiéramos hacer un diagrama de puntos para mostrar medidas al \(\frac{1}{4}\) de pulgada más cercano, ¿qué más sería útil hacer?” // “If we wanted to make a line plot and show measurements to the nearest \(\frac{1}{4}\) inch, what else might we do that would be helpful?” (Partition the space between two consecutive whole numbers into 4 equal parts.)
  • Partition the number line in increments of \(\frac{1}{4}\)
  • “¿Qué tal si quisiéramos mostrar medidas que incluyeran \(\frac{1}{8}\) de pulgada?” // “What if we wanted to show measurements that include \(\frac{1}{8}\) inch?” (Partition the space between two whole numbers into 8 equal parts.)

Activity

  • “En grupo, midan los lápices de colores al \(\frac{1}{4}\) de pulgada más cercano. Anoten sus medidas en la primera tabla y después grafíquenlas en el primer diagrama de puntos” // “Work with your group to measure colored pencils to the nearest \(\frac{1}{4}\) inch. Record your measurements in the first table and then plot them on the first line plot.”
  • 5–7 minutes: group work time
  • “Ahora vuelvan a medir los lápices, pero esta vez midan al \(\frac{1}{8}\) de pulgada más cercano. Anoten sus medidas en la segunda tabla y después grafiquen los datos nuevos en el segundo diagrama de puntos” // “Now measure the pencils again, but this time to the nearest \(\frac{1}{8}\) inch. Record your measurements in the second table and then plot the new data on the second line plot.
  • 5–7 minutes: group work time

Student Facing

Tu profesor le dará un lápiz a cada miembro de tu grupo.

  1. Mide el lápiz de color al \(\frac{1}{4}\) de pulgada más cercano. Revisa las medidas de los demás. Anota las medidas en la tabla.
    miembros del grupo longitud del lápiz (pulgadas)

    Photograph. Set of colored pencils.
  2. Haz un diagrama de puntos que represente los datos que tu grupo recolectó.

    Blank dot plot titled Colored-Pencil Data from 2 to 8 by 1’s. Hash marks by fourths. Horizontal axis, length of pencil in inches.

  3. Con tu grupo, mide cada lápiz de color al \(\frac{1}{8}\) de pulgada más cercano.

    Revisa las medidas de los demás. Anota todas las medidas en la tabla.

    miembros del grupo longitud del lápiz (pulgadas)
  4. Haz un diagrama de puntos que represente los nuevos datos.

    Blank dot plot titled Colored-Pencil Data from 2 to 8 by 1’s. Hash marks by fourths. Horizontal axis, length of pencil in inches.

  5. ¿Qué diferencias hubo entre medir al \(\frac{1}{4}\) de pulgada más cercano y medir al \(\frac{1}{8}\) de pulgada más cercano?

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

Students may identify the nearest inch and half inch but need support identifying the quarter or eighth inch. Consider asking students to think about what the halfway points between \(\frac{1}{2}\)-inch increments on the ruler represent, and then asking them again about the halfway points between  \(\frac{1}{4}\)-inch increments.

Activity Synthesis

  • Allow students to record their two sets of data on two different class line plots. (If dot stickers are available, consider using them—one sticker for each data point.)
  • “¿Cómo cambiaron sus datos y sus diagramas de puntos cuando midieron los lápices de colores al \(\frac{1}{8}\) de pulgada más cercano?” // “How did your data and line plots change when you measured colored pencils to the nearest \(\frac{1}{8}\) inch?” (Sample responses:
    • We got different numbers.
    • The marks or points on the line plots are distributed differently. The points for some of the same pencils show up as different lengths in the second line plot.)
  • “¿Qué es retador cuando medimos al \(\frac{1}{8}\) de pulgada más cercano?” // “What is challenging about measuring to the nearest \(\frac{1}{8}\) inch?” (The tick marks are smaller and harder to see on the ruler.)
  • “¿Por qué piensan que medimos al \(\frac{1}{8}\) de pulgada más cercano?” // “Why do you think we measure to the nearest \(\frac{1}{8}\) inch?” (We measure to be more accurate.)
  • “Veamos otros datos de longitudes que tienen medidas en medios, cuartos y octavos de pulgada” // “Let’s look at some other length data with measurements in halves, fourths and eighths of an inch.”

Activity 2: Medidas de los lápices de colores (20 minutes)

Narrative

In this activity, students create a line plot using measurements to the nearest \(\frac{1}{4}\) and \(\frac{1}{8}\) inch. This task prompts students to use their understanding of fraction equivalence to plot and partition the horizontal axis.

Representation: Access for Perception. Provide access to fraction strips that show fourths and eighths, and invite students to use them to answer question 4. Ask students to identify correspondences between the fraction strips and the horizontal axis of the line plot.
Supports accessibility for: Conceptual Processing, Visual-Spatial Processing

Launch

  • Groups of 2
  • “En la tabla hay una lista de varias longitudes diferentes” // “The table lists many different lengths.”
  • “¿Qué observan sobre las longitudes de los lápices?” // “What do you notice about the pencil lengths?” (Sample responses:
    • Some repeat more than one time.
    • The numbers are mixed numbers.
    • There are no whole numbers.)
  • 1 minute: quiet think time
  • “Hay algunas longitudes que son más comunes o que ocurren más veces que las demás” // “There are some lengths that are more common or occur more often than others.”
  • “Díganle a su compañero cuál es la longitud más común” // “Tell a partner the length that is most common.” (\(6\frac{3}{4}\))

Activity

  • Groups of 2
  • 5 minutes: independent work time
  • Monitor for students who use equivalence to plot measurements to the nearest eighth inch.
  • “Compartan sus diagramas de puntos con su compañero y hagan los ajustes que necesiten” // “Share your line plots with your partner and make revisions as needed.”
  • 2 minutes: partner discussion

Student Facing

  1. En la clase de Andre midieron las longitudes de algunos lápices de colores al \(\frac{1}{4}\) de pulgada más cercano. Estos son los datos:

    • \(1\frac{3}{4}\)
    • \(2\frac{1}{4}\)
    • \(5\frac{1}{4}\)
    • \(5\frac{1}{4}\)
    • \(4\frac{2}{4}\)
    • \(4\frac{2}{4}\)
    • \(6\frac{1}{4}\)
    • \(6\frac{3}{4}\)
    • \(6\frac{3}{4}\)
    • \(6\frac{3}{4}\)
    photo of color pencils
    1. Grafica los datos de los lápices en el diagrama de puntos.

      Blank dot plot from 1 to 7 by 1’s. Hash marks by fourths. Horizontal axis, length in inches.
    2. ¿Cuál longitud de los lápices es la más común en el conjunto de datos?
    3. Escribe 2 preguntas nuevas que se puedan contestar usando el diagrama de puntos.

  2. Después, en la clase de Andre, midieron los mismos lápices de colores al \(\frac{1}{8}\) de pulgada más cercano. Estos son los datos:

    • \(1\frac{6}{8}\)
    • \(2\frac{2}{8}\)
    • \(5\frac{2}{8}\)
    • \(5\frac{3}{8}\)
    • \(4\frac{4}{8}\)
    • \(4\frac{4}{8}\)
    • \(6\frac{6}{8}\)
    • \(6\frac{6}{8}\)
    • \(6\frac{6}{8}\)
    • \(6\frac{3}{8}\)
    1. Grafica los datos de los lápices en el diagrama de puntos.

      Blank dot plot from 1 to 7 by 1’s. Hash marks by fourths. Horizontal axis, length in inches.
    2. ¿Cuál longitud de los lápices es la más común en el diagrama de puntos?
    3. ¿Por qué algunas longitudes de los lápices cambiaron en el diagrama de puntos?
    4. ¿Cuál es la diferencia entre la longitud del lápiz más largo y la longitud del más corto? Muestra tu razonamiento.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students do not yet identify “most common” length as the length with the most data points on the line plot, consider asking: “¿Cuál medida apareció más veces que las demás?” // “Which measurement occurred more often than others?” and “¿Cuál medida de los lápices se graficó más veces?” // “Which pencil measurement was plotted most often?”

Activity Synthesis

  • “¿Cuántos lápices de colores midieron en la clase de Andre?” // “How many colored pencils were measured in Andre’s class?” (10, because there were ten data points and each represented a pencil that was measured.)
  • “¿Cuál fue la medida más común en el primer conjunto de datos?, ¿en el segundo conjunto de datos?” // “What was the most common measurement in the first set of data? In the second set of data?” (In the first set of data: \(6\frac{3}{4}\) inches. In the second set of data: \(6\frac{6}{8}\).)
  • “¿Cómo les ayudaron las equivalencias a graficar los datos de las medidas en octavos de pulgada?” // “How did you use equivalence to help as you plotted measurement data in eighths of an inch?” (I know that two eighths are equivalent to one fourth and this helped to find eighths on the line plots.)
  • Use the line plot image to clearly label \(\frac{1}{2}\), \(\frac{1}{4}\) and \(\frac{1}{8}\) with help from students.

Activity 3: Los lápices de colores de Noah (15 minutes)

Narrative

In this activity, students continue to analyze line plot data and use the data to answer questions. Each data set involves lengths measured to the nearest \(\frac{1}{4}\) and \(\frac{1}{8}\) inch. As students organize and analyze data, they revisit ideas about fraction equivalence and addition and subtraction of fractions. When students relate the data to the context it represents and carefully interpret the elements of a graph, they reason abstractly and quantitatively and attend to precision (MP2, MP6). 

MLR7 Compare and Connect. Synthesis: After all strategies have been presented, lead a discussion comparing, contrasting, and connecting the different approaches. Ask, “¿Por qué distintas estrategias nos llevaron al mismo resultado (o a uno diferente)?” // “Why did the different approaches lead to the same (or different) outcome(s)?”, “¿Qué tenían en común las estrategias?” // “What did the strategies have in common?”, and “¿En qué eran diferentes?” // “How were they different?”
Advances: Representing, Conversing

Launch

  • Groups of 2
  • “Observen el diagrama de puntos. Piensen en un par de cosas que sepan que son verdaderas sobre los lápices de colores de Noah. Básense en los datos que ven” // “Take a look at the line plot. Think of a couple of things that you know to be true about Noah’s colored pencils based on the data you see.”
  • 1 minute: quiet think time
  • Invite 2–3 students to share their responses.

Activity

  • “Trabajen individualmente durante unos minutos antes de compartir sus ideas con su compañero” // “Take a few minutes to work on your own before sharing ideas with your partner.”
  • 5 minutes: independent work time
  • 5 minutes: partner work time
  • Monitor for students who:
    • decompose the mixed numbers to find the difference between  the longest and shortest points of data
    • recognize and label eighths on the number line as the halfway points between consecutive fourths

Student Facing

En el diagrama de puntos se muestran los datos que Noah recolectó sobre una colección de lápices de colores.

Dot plot titled Noah's Colored Pencils from 1 to 7 by 1’s. Hash marks by eighths. Horizontal axis, length, in inches. Beginning at 1 and 6 eighths, the number of X’s above each eighth increment is 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 5, 0, 3.

Usa el diagrama de puntos para decir si cada una de las siguientes afirmaciones es verdadera o falsa. Prepárate para explicar o mostrar cómo lo sabes. Corrige cada afirmación que sea falsa para volverla verdadera.

  1. Noah midió los lápices al \(\frac{1}{2}\) de pulgada más cercano.
  2. Hay cinco lápices que miden \(6\frac{1}{4}\) pulgadas de largo.
  3. El lápiz más corto mide \(1\frac{3}{4}\) pulgadas de largo.
  4. Los tres lápices más largos miden exactamente 5 pulgadas más de largo que el lápiz más corto.
  5. Si Noah quitara el lápiz más corto de la colección, la diferencia de longitud entre los lápices más largos y los más cortos sería 3 pulgadas.

Si te queda tiempo:

Noah quiere formar una colección de al menos 10 lápices. Además, quiere que la diferencia de longitud entre los lápices más largos y los más cortos no sea mayor que \(1\frac{1}{2}\) pulgadas. ¿Eso es posible? Si lo es, ¿cuáles lápices debería quitar de su colección?

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Select students to share strategies for finding the difference between the longest and shortest lengths? 
  • Make connections between strategies, being sure to emphasize strategies that involve decomposing fractions in different ways. 
  • Consider asking: “¿Qué tienen en común estas estrategias?” // “What are the similarities between these strategies?”

Lesson Synthesis

Lesson Synthesis

“Hoy organizamos datos en diagramas de puntos y respondimos preguntas sobre los datos” // “Today we organized data on line plots and answered questions about the data.”

“¿Cómo compararon los puntos de datos o cómo los usaron para responder preguntas cuando los datos eran fracciones que tenían denominadores diferentes?” // “How did you compare the data points or use them to answer questions when the data were fractions with different denominators?” (We used equivalence to relate them. We knew the relationship between halves, fourths, and eighths.)

“¿Cómo podríamos encontrar la diferencia entre el lápiz más largo y el lápiz más corto a partir del último diagrama de puntos?” // “How could we find the difference between the longest and shortest colored pencils from the last line plot?” (The leftmost point represents the shortest pencil, the rightmost point represents the longest. We could use the marks on the number line to count up or down to find the difference, or we can subtract the two fractions.)

Cool-down: Los datos de los lápices de Jada (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.