Lesson 12

Sumas y diferencias de fracciones

Warm-up: Conversación numérica: Restemos algunos octavos (10 minutes)

Narrative

This Number Talk encourages students to rely on what they know about fractions to mentally find the value of differences with mixed numbers. 

Launch

  • Display one expression.
  • “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
  • 1 minute: quiet think time

Activity

  • Record answers and strategy.
  • Keep expressions and work displayed.
  • Repeat with each expression.

Student Facing

Encuentra mentalmente el valor de cada expresión.

  • \(2\frac{3}{8} - \frac{3}{8}\)
  • \(2\frac{3}{8} - \frac{5}{8}\)
  • \(2\frac{3}{8} - 2\)
  • \(2\frac{3}{8} - 1\frac{7}{8}\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Cómo les ayudaron las primeras expresiones a encontrar el valor de la última expresión?” // “How did the first few expressions help you find the value of the last expression?”
  • “Al restar \(1\frac{7}{8}\), ¿por qué puede ser útil pensar primero en restar 2?” // “When subtracting \(1\frac{7}{8}\), why might it be helpful to first think about subtracting 2?” (\(2\frac{3}{8}\) has a whole number and a fraction, so we can easily subtract 2 from the whole number and then put back the extra \(\frac{1}{8}\) that we took out.)
  • Consider asking:
    • “¿Alguien usó la misma estrategia, pero la explicaría de otra forma?” // “Did anyone have the same strategy but would explain it differently?”
    • “¿Alguien pensó en la expresión de otra forma?” // “Did anyone approach the expression in a different way?”

Activity 1: Hagamos que sea verdadera (20 minutes)

Narrative

In this activity, students find the number that makes addition and subtraction equations with mixed numbers true without a context. The equations are designed to encourage students to decompose or write equivalent fractions for one or more numbers to find the unknown value, but students may choose to reason without doing either. When students share their strategies with their group they construct viable arguments (MP3).

MLR8 Discussion Supports. Synthesis. Display sentence frames to support partner discussions: “Primero, yo _____ porque . . .” // “First, I _____ because . . . .”, “Observé _____, entonces yo . . .” // “I noticed _____ so I . . . .”
Advances: Speaking, Conversing
Action and Expression: Develop Expression and Communication. Provide alternatives to writing on paper. Invite students to share their first steps orally.
Supports accessibility for: Organization, Attention

Launch

  • Groups of 2–4

Activity

  • “Individualmente, encuentren el número que debe ir en cada espacio en blanco para que cada ecuación sea verdadera” // “Work independently to find the number that should go in the blank to make each equation true.”
  • 5 minutes: independent work time on the first problem
  • “Ahora piensen en cómo empezaron a encontrar cada número desconocido. Escriban una frase que describa su primer paso en el proceso de completar la ecuación” // “Now think about how you started finding each missing number. Write a sentence to describe your first step in completing each equation.”
  • 5 minutes: independent work time on the second problem
  • “Compartan sus primeros pasos con su grupo. En cada ecuación, ¿empezaron a encontrar el número desconocido de la misma forma? Discutan por qué sí o por qué no” // “Share your first steps with your group. For each equation, did you start to find the missing number the same way? Discuss why or why not.”
  • 5 minutes: group discussion

Student Facing

  1. En cada caso, encuentra el número que hace que la ecuación sea verdadera. Muestra tu razonamiento.

    1. \(\underline{\hspace{0.5in}} + \frac{2}{6} = 1\frac{1}{6}\)

    2. \(2\frac{4}{5} + \underline{\hspace{0.5in}} = 7\frac{1}{5}\)

    3. \(3 - 2\frac{1}{3} = \underline{\hspace{0.5in}}\)

    4. \(4\frac{1}{12} - 2\frac{5}{12} = \underline{\hspace{0.5in}}\)
  2. Escribe una frase que describa el primer paso que hiciste para encontrar el número desconocido en cada ecuación del primer problema.

    1. Primer paso:

    2. Primer paso:

    3. Primer paso:

    4. Primer paso:

  3. Compara tus primeros pasos con los de tu grupo y reflexionen sobre ellos. ¿Usaron los mismos pasos?

    Discutan por qué volverían a escoger la misma forma de empezar a encontrar los números desconocidos, o por qué escogerían una nueva forma.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Invite students to share how they went about finding the missing numbers. Display or record their reasoning for all to see.
  • To invite others into a discussion, consider asking:
    • “¿Alguien encontró el número desconocido de esta ecuación de la misma manera?” // “Did anyone find the missing number in this equation the same way?”
    • “¿Alguien usó la misma estrategia o una similar, pero la explicaría de otra forma?” // “Who used the same or a similar strategy but would explain it differently?”

Activity 2: Descomponer o no descomponer (15 minutes)

Narrative

In this activity, students analyze a set of addition and subtraction expressions and consider whether it is helpful or necessary to decompose a number in order to find the value of the expressions. In doing so, they practice looking for structure in expressions, which they can in turn use to find sums or differences more effectively (MP7). Note that there is more than one way to sort the expressions, as students may have different ways of reasoning about these expressions.

Launch

  • Groups of 3–4
  • “En actividades anteriores, entendimos que a veces es útil descomponer un número entero o un número mixto antes de restarle una fracción” // “In earlier activities, we saw it was sometimes useful to decompose a whole number or a mixed number before subtracting a fraction from it.”
  • “Al mirar una expresión de suma o de resta, ¿pueden saber si sería útil (o necesario) descomponer un número o reescribirlo antes de sumar o restar? ¡Averigüémoslo!” // “Can you tell—by looking at an addition or subtraction expression—whether it would be helpful (or necessary) to decompose a number or rewrite it before we could add or subtract? Let’s find out!”

Activity

  • “Con su grupo, clasifiquen las expresiones en dos categorías” // “Work with your group to sort the expressions into two categories.”
  • 5 minutes: group work time
  • “Cuando terminen, escojan por lo menos una expresión de cada categoría y encuentren su valor individualmente” // “When you are done, choose at least one expression from each category and work independently to find its value.”
  • “Cada miembro del grupo debe escoger una expresión diferente de cada categoría” // “Every group member should choose a different expression from each category.”
  • 5 minutes: independent work time

Student Facing

  1. Estas son algunas expresiones de suma y de resta. Clasifícalas en dos categorías de acuerdo a si piensas que sería útil descomponer un número para encontrar el valor de la expresión. Prepárate para explicar tu razonamiento.

    1. \(\frac{18}{5} - \frac{7}{5}\)
    2. \(\frac{1}{6} + \frac{9}{6}\)
    3. \(7 - 1\frac{3}{8}\)
    4. \(\frac{102}{100} + 5\frac{27}{100}\)
    5. \(2\frac{5}{12} +\frac{6}{12}\)
    6. \(6\frac{1}{10} - \frac{6}{10}\)
    7. \(3\frac{8}{100} + 4\frac{93}{100}\)
    8. \(5 - \frac{17}{12}\)
    9. \(1\frac{3}{10} + \frac{6}{10}\)
    10. \(\frac{17}{8} - 1\frac{7}{8}\)
    • No es necesario ni es útil descomponer ningún número:
    • Es necesario o es útil descomponer uno o más números:
  2. Escoge por lo menos una expresión de cada categoría y encuentra su valor. Muestra tu razonamiento.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Select groups to share the expressions they put in each category and invite others to agree or disagree.
  • Ask other students to choose 1–2 expressions that they evaluated from each category and show that it is or it is not helpful or necessary to decompose a number. (For example, if they put expression A in the 'not necessary to decompose' category, their work should show that the difference can be found without decomposing.)

Lesson Synthesis

Lesson Synthesis

“Hoy pensamos en varias formas de encontrar el valor de sumas y diferencias de fracciones y números mixtos. También pensamos en cuándo era útil descomponer uno de los números y cuándo era útil escribir fracciones equivalentes” // “Today we thought about different ways to find the value of sums and differences of fractions and mixed numbers and whether it is helpful to decompose one of the numbers or write equivalent fractions.”

“En la última actividad, ¿cómo clasificaron las expresiones? ¿Cómo supieron, sin hacer cálculos, si iba a ser necesario o útil descomponer un número?” // “In the last activity, how did you sort the expressions? How did you know, without doing any computation, whether it would be necessary or helpful to decompose a number?” (Sample responses:

  • For subtraction expressions: We looked at the numerators of the first and second numbers. If the first one is greater, there is no need to decompose. If the first number is a whole number, it is helpful to decompose it.
  • For addition expressions: We looked at whether the fractional part of each number would add up to more than 1. If so, it may be necessary to decompose the sum to write a mixed number.)

Highlight that there are numerous ways to start adding and subtracting fractions. Depending on the numbers at hand, it might make sense to decompose or write an equivalent fraction for one or both numbers, to count up or count down, to add or subtract in parts, and so on.

Cool-down: ¿Cómo encontrarías la diferencia? (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.