Lesson 18
Dividamos con cocientes parciales
Warm-up: Conversación numérica: Dividir entre 3 (10 minutes)
Narrative
This Number Talk encourages students to look for and make use of the structure of numbers in base-ten to mentally solve division problems. The reasoning elicited here will be helpful later in the lesson when students divide large numbers using increasingly more abstract strategies.
Launch
- Groups of 2
- Display one expression.
- “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
- 1 minute: quiet think time
Activity
- Record answers and strategy.
- Keep expressions and work displayed.
- Repeat with each expression.
Student Facing
Encuentra mentalmente el valor de cada expresión.
- 90 \div 3
- 96 \div 3
- 960 \div 3
- 954 \div 3
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “¿Cómo les ayudó cada expresión a encontrar la siguiente?” // “How did each expression help you find the next one?”
- Consider asking:
- “¿Alguien puede expresar el razonamiento de _______ de otra forma?” // “Who can restate _______ 's reasoning in a different way?”
- “¿Alguien usó la misma estrategia, pero la explicaría de otra forma?” // “Did anyone have the same strategy but would explain it differently?”
- “¿Alguien pensó en la expresión de otra forma?” // “Did anyone approach the expression in a different way?”
- “¿Alguien quiere agregar algo a la estrategia de ____?” // “Does anyone want to add on to____’s strategy?”
Activity 1: Descompongamos dividendos (20 minutes)
Narrative
In this activity, students encounter a way to divide a multi-digit number by using partial quotients and writing equations for them. They analyze and interpret the equations and consider how it is like and unlike finding quotients using base-ten representations. In the next activity, students will be introduced to a way to record partial quotients vertically.
Advances: Conversing, Speaking, Representing
Required Materials
Materials to Gather
Launch
- Groups of 4.
- Give students access to base-ten blocks.
Activity
- Pause after the first question and discuss students’ responses. Record and display responses for all to see.
Student Facing
- Encuentra el valor de 465 \div 5. Muestra cómo razonaste. Puedes usar bloques en base diez si crees que te pueden ayudar.
-
Priya encontró el valor de 465\div 5 así:
\begin{align} 400\div 5&= 80\\ 60\div 5 &= 12\\ 5 \div 5 &= \phantom{0}1 \\ \overline {\hspace{5mm}465 \div 5} &\overline{\hspace{1mm}= 93 \phantom{000}}\end{align}
-
¿Qué hizo Priya? Describe sus pasos.
- ¿En qué se parecen el método de Priya y el tuyo?
- Usa el método de Priya para encontrar el valor de 428 \div 4.
-
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Invite students to share their interpretations of Priya’s work and compare it to their
reasoning in the first question.
- “¿Cómo descompuso Priya el número 465?” // “How did Priya decompose the number 465?” (By place value. 400 + 60 + 5)
- “¿Qué hizo Priya después de escribir las tres primeras ecuaciones?” // “What does Priya do after writing the first three equations?” (She adds up the quotients.)
- “Podemos encontrar un cociente por partes, dividiendo una porción del dividendo a la vez, hasta que no haya más partes para dividir (o hasta que no haya suficiente cantidad para dividir)” // “We can find a quotient in parts—dividing a portion of the dividend at a time—until there is no more (or until there is not enough) of the dividend to divide.”
- “Cada cociente se llama un cociente parcial” // “Each quotient is called a partial quotient.”
Activity 2: El método de Tyler (15 minutes)
Narrative
In this activity, students are introduced to an algorithm that uses partial quotients, a vertical method of recording partial quotients. They compare and contrast this approach with other ways of dividing numbers using partial quotients and try using it to divide multi-digit numbers.
When students analyze Priya and Tyler's work and explain their reasoning, they critique the reasoning of others (MP3).
Supports accessibility for: Conceptual Processing, Organization
Launch
- Groups of 4
- Display Priya and Tyler’s methods.
Activity
- “Tyler usó otro método para registrar 465 \div 5. Analicen lo que está pasando en su método. Piensen en las semejanzas y las diferencias entre los dos métodos” // “Tyler used a different method to record 465 \div 5. Analyze what is happening in his method. Think about how the two methods are alike and different.”
- 3 minutes: independent work time on the first two questions
- 3 minutes: small-group discussion
- Invite students to share their analyses on the two methods.
- If not mentioned by students, highlight that both Priya and Tyler divided in parts, but
reasoned and recorded differently.
- Priya recorded the partial quotients with division equations.
- The partial quotients in Tyler's work are recorded as factors being multiplied by 5, and also listed above the dividend.
- Tyler kept dividing in parts and subtracting until there's nothing left of the dividend to divide.
- Clarify the meaning of the numbers in Tyler’s method before students work on the last question.
- 3 minutes: independent work time to find the value of 428 \div 4.
Student Facing
Tyler usa otro método para encontrar el valor de 465 \div 5. Comparemos el trabajo de Priya y el de Tyler.
El método de Priya
\begin{align} 400\div 5&= 80\\ 60\div 5 &= 12\\ 5 \div 5 &= \phantom{0}1 \\ \overline {\hspace{5mm}465 \div 5} &\overline{\hspace{1mm}= 93 \phantom{000}} \end{align}
El método de Tyler
- ¿En qué se parecen los métodos de Priya y Tyler? ¿En qué son diferentes? Haz una lista de todas las semejanzas y otra de todas las diferencias que puedas encontrar.
- ¿Por qué crees que Tyler hace restas en su método?
- Muestra cómo podría Tyler registrar el proceso para encontrar el valor de 428 \div 4.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Invite students to share their responses. Highlight the different ways to decompose 428 or the different partial quotients that could be used to find 428 \div 4.
- Make sure students see that Priya’s equations and Tyler’s method are simply two ways to record partial quotients, but they are not fundamentally different.
- “El método de Tyler, en el que registra de forma vertical, es otro tipo de algoritmo” // “Tyler’s vertical recording method is another type of algorithm.”
Lesson Synthesis
Lesson Synthesis
“Hoy aprendimos a usar un algoritmo en el que se usan cocientes parciales para dividir números” // “Today we learned to use an algorithm that uses partial quotients to divide numbers.”
“¿Cómo le explicarían los ‘cocientes parciales’ a un compañero que no haya venido hoy?” // “How would you explain ‘partial quotients’ to a classmate who might be absent today?” (We can find a quotient in parts—dividing a portion of the dividend at a time—until there is no more or until there is not enough of the dividend to divide. Each quotient is called a partial quotient.)
“Supongamos que queremos encontrar el valor de 738 \div 9 y sabemos que podemos descomponer el 738 en partes. ¿Cómo sabríamos cuáles números escoger?” // “Suppose we’d like to find the value of 738 \div 9 and know we could decompose the 738 into parts. How would we know what numbers to choose?” (Look for multiples of 9. Try to start with the largest multiple of 9 and 10 within 738.)
“¿Qué formas hay de descomponer 738 en múltiplos de 9?” // “What are some ways to decompose 738 into multiples of 9?” (720 + 18, or 450 + 270 + 18, among others.)
Display:
738 \div 9
\begin{align} 720\div 9&= 80\\ 18\div 9 &= \phantom{0}2\\ \overline {\hspace{5mm}738 \div 9} &\overline{\hspace{1mm}= 82 \phantom{000}}\end{align}
“Vimos dos maneras de anotar los cocientes parciales: escribiendo varias ecuaciones y escribiendo los pasos de la división de forma vertical. ¿En qué lugar de cada una vemos los cocientes parciales?” // “We saw two ways of recording partial quotients—by writing a series of equations and by recording the steps of division vertically. Where can we see the partial quotients in each one?”
Cool-down: Resta grupos (5 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.