Lesson 10

Usemos algoritmos de productos parciales: 2 números de dos dígitos

Warm-up: Conversación numérica: Productos (10 minutes)

Narrative

This Number Talk encourages students to think about the strategies they can use to multiply 2 two-digit numbers. Students can decompose factors by place value to multiply by multiples of ten, or they can use a doubling and halving strategy to create an equivalent expression. The strategies elicited here will be helpful later in developing a flexible sense of numbers and using this sense to make decisions when multiplying mentally.

Launch

  • Display one expression.
  • “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
  • 1 minute: quiet think time

Activity

  • Record answers and strategy.
  • Keep expressions and work displayed.
  • Repeat with each expression.

Student Facing

Encuentra mentalmente el valor de cada expresión.

  • \(30 \times 7\)
  • \(15 \times 14\)
  • \(50 \times 8\)
  • \(25 \times 16\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Cómo les puede ayudar \(30 \times 7\) a encontrar el valor de \(15 \times 14\)?” // “How can \(30 \times 7\) help you solve \(15 \times 14\)?” (\(30 \times 7\) is twice as many groups with half as much in each group, which results in the same product with easier factors to multiply mentally.)

Activity 1: Registremos productos parciales (25 minutes)

Narrative

In this activity, students analyze multiplication involving 2 two-digit factors. Students make sense of work where the partial products are recorded, but there is no indication of where each product came from. After making sense of work, students use the same strategy of finding and keeping track of partial products to evaluate \(31 \times 15\).

This activity uses MLR1 Stronger and Clearer Each Time. Advances: reading, writing

Representation: Internalize Comprehension. Provide students with a partially completed version of the itemized steps as described in the Activity Synthesis. For example, offer students a page that shows four copies of \(64 \times 87\). Each equation could have one of the partial products written in its corresponding color underneath. Invite students to use a green, yellow, red, and purple colored pencil to highlight the digits involved in each step and to write the corresponding multiplication expression next to each partial product.
Supports accessibility for: Visual Spatial Processing, Organization, Attention

Launch

  • Groups of 2
  • “Encuentren el valor de \(64\times87\). Compartan con un compañero cómo razonaron” // “Find the value of \(64\times87\) and share your reasoning with a partner.”

Activity

  • “Tómense algunos minutos para darle sentido a los cálculos de Tyler. Prepárense para explicar cómo pensaron” // “Take a few minutes to make sense of Tyler’s calculation. Be prepared to explain your thinking.”
  • 3–4 minutes: independent work time on the first problem

MLR1 Stronger and Clearer Each Time

  • “Compartan con un compañero su análisis de los cálculos de Tyler. Por turnos, uno habla y el otro escucha. Si es su turno de hablar, compartan sus ideas y lo que han escrito hasta ese momento. Si es su turno de escuchar, hagan preguntas y comentarios que ayuden a su compañero a mejorar su trabajo” // “Share your analysis of Tyler’s calculation with a partner. Take turns being the speaker and the listener. If you are the speaker, share your ideas and writing so far. If you are the listener, ask questions and give feedback to help your partner improve their work.”
  • 2 minutes: structured partner discussion 
  • Consider displaying these prompts to support students’ conversations:
    • “¿Pueden explicar cómo al multiplicar _____ y _____ se obtiene _____?” // “Can you explain how multiplying _____ and _____ gives _____?”
    • “¿Pueden usar las palabras ‘productos parciales’ en su explicación?” // “Can you use the phrase ‘partial products’ in your explanation?”
  • Repeat with 1–2 different partners.
  • “Ajusten su borrador inicial basándose en los comentarios que les hicieron sus compañeros” // “Revise your initial draft based on the feedback you got from your partners.”
  • 2–3 minutes: independent work time
  • “Ahora intenten usar el método de Tyler para completar el último problema y usen un diagrama para comprobar su trabajo” // “Now try using Tyler’s method to complete the last problem and use a diagram to check your work.”
  • 5 minutes: independent work time on the last problem

Student Facing

  1. Tyler usó un algoritmo para encontrar el valor de \(64 \times 87\).

    multiply. sixty 4 times eighty 7.

    ¿Cómo piensas que encontró los últimos cinco números? Registra cómo pensaste. Prepárate para compartir esto con un compañero.

  2. Usa el método de Tyler para encontrar el valor de \(31 \times 15\). Luego, dibuja un diagrama para comprobar tu respuesta.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • To clarify the steps in Tyler’s notation, consider itemizing each step and using color coding, as shown here:
    multiplication algorithm.
    multiplication algorithm.
    multiplication algorithm.
    multiplication algorithm
    multiplication algorithm
  • Also consider displaying a corresponding diagram for \(64 \times 87\) and inviting students to make connections to an algorithm.
    area diagram

Activity 2: El error de Han al multiplicar (10 minutes)

Narrative

When using an algorithm that uses partial products, students may be inclined to pay attention only to single digits in each number and pay little attention to the value of the digits. For example, \(32 \times 19\) might sound like “9 times 2 is 18 and 9 times 3 is 27.” In this activity, students analyze this error (MP3) and also look at the commutativity of multiplication when finding partial products.

To help students see that the place value of the digits impacts each partial product, consider displaying a diagram that shows partial products alongside the vertical notation.

MLR8 Discussion Supports. Synthesis: Display sentence frames to support whole-class discussion: “_____ y _____ se parecen porque . . .” // “_____ and _____ are the same/alike because . . .” and “¿Por qué ustedes . . .?” // “Why did you . . .?”
Advances: Speaking, Conversing

Launch

  • Groups of 2

Activity

  • “Trabajen con su compañero en el primer problema. Cada uno debe encontrar el valor de un producto” // “Work with your partner on the first problem. Each partner should find the value of one product.”
  • 3–4 minutes: partner work time on the first problem
  • Pause for a discussion. Select a group whose calculations yield the same product to display their work.
  • “¿Los cálculos deberían mostrar el mismo resultado? ¿Por qué sí o por qué no?” // “Should the calculations show the same result? Why or why not?” (Yes, because the same two numbers are being multiplied.)
  • “¿En qué se diferencian las dos formas de calcular?” // “How are the two calculations different?” (The partial products are written in different orders.)
  • “¿Importa cuál sea el primer número que se escribe y cuál sea el segundo?” // “Does it matter which number is listed first and which is listed second?” (No)
  • “Completen el último problema individualmente” // “Complete the last problem independently.”
  • 3–4 minutes: independent work time

Student Facing

  1. Decide con tu compañero quién va a encontrar cada producto. Muestra cómo razonaste.

    multiply. 19 times 32 equals.
    multiply. 32 times 19 equals.
  2. Así fue como Han calculó \(51 \times 47\):

    multiply. fifty 1 times 47. 7 rows.
    1. ¿Qué error o errores cometió Han?
    2. Muestra el cálculo correcto para encontrar el valor de \(51 \times 47\).

      multiply. fifty 1 times 47 equals.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • See lesson synthesis.

Lesson Synthesis

Lesson Synthesis

“Hoy usamos productos parciales en un algoritmo para multiplicar parejas de números de dos dígitos. Escribimos expresiones y ecuaciones que nos ayudaron a encontrar y a organizar los productos parciales cuando multiplicábamos” // “Today we used partial products in an algorithm to multiply pairs of two-digit numbers. We wrote expressions and equations to help us find and keep track of the partial products as we were multiplying.”

Select 1–2 examples of student work for \(31\times15\) for the focus of class discussion.

“Examinemos las estrategias que usó un estudiante de nuestra clase para encontrar el valor de \(31\times15\)” // “Let’s look at the strategies used by one student from our class to solve \(31\times15\).”

“Antes de analizar este ejemplo en detalle, ¿pueden saber si esta respuesta es correcta o parece razonable? ¿Por qué sí o por qué no?” // “Before we analyze this sample closely, can you tell whether his answer is correct or seems reasonable? Why or why not?”  

Select students to explain each step in the computation and any questions the sample raises. 

Display a different calculation for \(31\times15\). Consider using a diagram to support students in making sense of the products of the decomposed factors in the vertical calculation.

Reiterate the importance of paying attention to the place value of each digit being multiplied as we find and record the partial products.

Cool-down: Escoge tu propia estrategia (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.