Lesson 14
Situaciones que involucran factores y múltiplos
Warm-up: Conversación numérica: Dividamos entre 7 (10 minutes)
Narrative
This Number Talk encourages students to compose or decompose multiples of 7 and to rely on properties of operations to mentally solve problems. The ability to compose and decompose numbers will be helpful when students divide multi-digit numbers. It also promotes the reasoning that is useful when finding multiples of a number, or when deciding if a number is a multiple of another number.
Launch
- Display one expression.
- “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
- 1 minute: quiet think time
Activity
- Record answers and strategy.
- Keep expressions and work displayed.
- Repeat with each expression.
Student Facing
Encuentra mentalmente el valor de cada expresión.
- \(21 \div 7\)
- \(35 \div 7\)
- \(140 \div 7\)
- \(196 \div 7\)
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “¿Qué tienen en común las expresiones?” // “What do the expressions have in common?” (They all involve division by 7. The dividends are all multiples of 7. The results have no remainders.)
- “¿Cómo nos ayudaron las primeras tres expresiones a encontrar el valor de la última expresión?” // “How did the first three expressions help us find the value of the last expression?”
- Consider asking:
- “¿Alguien puede expresar el razonamiento de _______ de otra forma?” // “Who can restate _______ 's reasoning in a different way?”
- “¿Alguien usó la misma estrategia, pero la explicaría de otra forma?” // “Did anyone have the same strategy but would explain it differently?”
- “¿Alguien pensó en la expresión de otra forma?” // “Did anyone approach the expression in a different way?”
- “¿Alguien quiere agregar algo a la estrategia de ____?” // “Does anyone want to add on to____’s strategy?”
Activity 1: Escribamos múltiplos (20 minutes)
Narrative
This activity prompts students to use the relationship between multiplication and division and their understanding of factors and multiples to solve problems about an unknown factor (MP7). Students recognize such problems as division situations. Here the dividends are three-digit numbers and the divisors are one-digit numbers. Students use the context of factors and multiples to interpret division that results in a remainder.
One approach for solving these problems is by decomposing the dividend into familiar multiples of 10 and then dividing the remaining number (which is now smaller) by the divisor. Another is to find increasingly greater multiples of the divisor until reaching the dividend. Both are productive and appropriate. In the synthesis, help students see the connections between the two paths.
Advances: Speaking
Supports accessibility for: Conceptual Processing
Launch
- “¿Alguien le puede recordar a la clase el significado de ‘múltiplo’?” // “Who can remind the class of the meaning of ‘multiple?’”
Activity
- 4–5 minutes: quiet work time for the first set of questions
- Monitor for students who:
- decompose 104 into a multiple of 8 and another number
- compose 104 from increasingly larger multiples of 8
- use multiplication or division equations to show their reasoning
- Pause for a discussion before the second set of questions.
- Select students who use different decomposition strategies to share responses. Record and display their reasoning.
- “Retomemos cada una de las preguntas que acabamos de responder. ¿Qué ecuaciones podemos escribir para representarlas?” // “Let’s revisit each question we just answered. What equations could we write to represent them?”
- Display equations and highlight their connection to the questions:
- \(8 \times {?} = 104\) or \(104 \div 8 = {?}\)
- \(15 \times 13 = {?}\) or \( 13 \times 15 = {?}\)
- \({?} \times 13 = 286\) or \(286 \div 13 = {?}\)
- 4–5 minutes: quiet work time for the second set of questions
Student Facing
-
Han comienza a escribir múltiplos de un número. Cuando llega a 104, él ha escrito 8 números.
En cada una de las siguientes preguntas, muestra cómo razonaste.
- ¿Han está escribiendo múltiplos de qué número?
- ¿Cuál es el 15.º múltiplo de este número?
- Han llega a 286. ¿Cuántos números ha escrito en este momento?
-
Kiran quiere saber cuántos múltiplos de 7 hay entre 0 y 150.
- Él piensa que puede usar la división para averiguarlo. ¿Estás de acuerdo? Explica cómo razonaste.
- ¿Cuántos múltiplos encontrará Kiran? Muestra cómo razonaste.
- ¿Es 150 un múltiplo de 7? Muestra cómo lo sabes.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Invite students to share responses for the last set of questions.
- Highlight that to divide a number by a smaller number—say, divide 150 by 7, we can:
- Use familiar multiples or multiplication facts to help us. For example, if we know \((20 \times 7) + (1 \times 7) = 147\), we know the result is 21 with a remainder of 3, or \(150 = 21 \times 7 + 3\).
- Think of the dividend in smaller chunks. For example: We can see the 150 as \(140 + 10\) and divide each 140 and 10 by 7 separately, which gives \(20 + 1\) with a remainder of 3.
Activity 2: El número secreto de Jada (15 minutes)
Narrative
In this activity, students continue to use the relationship between multiplication and division to reason about situations that involve division. Students divide three-digit numbers by single-digit divisors and find results with and without a remainder.
Launch
- Groups of 2
Activity
- 5 minutes: independent work time on the first question
- 2 minutes: partner discussion
- 2–3 minutes: partner work time on the second question
- Monitor for students who clearly show how they use partial products or partial quotients to answer the questions.
Student Facing
Jada está escribiendo múltiplos de un número secreto. Después de escribir un montón de números, ella escribe 126.
- Mai dice que el número secreto es 6.
- Priya dice que el número secreto es 8.
- Andre dice que el número secreto podría ser 9.
- ¿Con cuál estudiante estás de acuerdo? Muestra tu razonamiento e incluye ecuaciones.
-
Jada ofrece otra pista: “Si sigo escribiendo múltiplos, llegaré a 153”.
¿Cuál es el número secreto? Explica o muestra tu razonamiento.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “¿Cómo podríamos usar la división como ayuda para encontrar el número secreto?” // “How could we use division to help us find out the mystery number?” (If the result has a remainder, then the divisor could not be the mystery number. 153 divided by 6 has 3 as a remainder. 153 divided by 9 has no remainder, so 9 is the mystery number.)
Lesson Synthesis
Lesson Synthesis
“Hoy tratamos de averiguar si un número es un múltiplo o un factor de otro número. Por ejemplo, ¿267 es un múltiplo de 8?” // “Today we tried to find out if a number is a multiple or a factor of another number. For instance: Is 267 a multiple of 8?”
“¿Esta pregunta corresponde a un problema de división?” // “Is this question a division problem?” (Yes)
“¿Por qué?” // “Why?” (We’re looking for how many 8s are in 267.)
“¿Qué estamos dividiendo?” // “What are we dividing?” (267 by 8)
“La pregunta se puede responder usando hechos de multiplicación conocidos o encontrando productos parciales. ¿Cómo empezarían?” // “One way to answer the question is by using familiar multiplication facts or by finding partial products. How would you start?” (One way is to start with 10 x 8 or its multiples, build the products up to 267 or close to it, and then try smaller multiples of 8.
\(10 \times 8 = 80\)
\(20 \times 8 = 160\)
\(30 \times 8 = 240\)
\(3 \times 8 = 24\)
\(33 \times 8 = 264\)
264 is 3 away from 267, not enough to make another 8, so 267 is not a multiple of 8.)
“¿Por qué nos puede ayudar empezar con los múltiplos de 10?” // “Why might it be helpful to start with multiples of 10?” (They’re easy to find and easy to add.)
“¿Podemos usar la división para responder la pregunta?” // “Can we use division to answer the question?” (We can start a number close to 267 that is a multiple of 8, divide it by 8, see what is left, and find a multiple of 8 that is close to that number. For example:
- \(160 \div 8 = 20\). After taking 160 away, there’s 107 left.
- \(80 \div 8 = 10\). After taking 80 away, there’s 27 left.
- \(24 \div 8 = 3\). After taking 24 away, there’s 3 left, which is not enough to make 8.)
“¿En qué se parecen las dos estrategias?” // “How are the two approaches alike?” (They involve using smaller multiples of a number to see if a larger number is a multiple of that number.)
Cool-down: Llegar a 161 con múltiplos (5 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.