Lesson 6

Retomemos el volumen

Warm-up: Exploración de estimación: Cubos de azúcar (10 minutes)

Narrative

The purpose of an Estimation Exploration is for students to practice the skill of estimating a reasonable answer based on experience and known information. In this activity, students estimate the number of sugar cubes in the bowl. During the synthesis, revisit what students know about rectangular prisms and volume and connect it to the image of the sugar cubes.

Launch

  • Groups of 2
  • Display the image.
  • “¿Qué estimación sería muy alta?, ¿muy baja?, ¿razonable?” // “What is an estimate that’s too high?” “Too low?” “About right?”
  • 1 minute: quiet think time

Activity

  • “Discutan con su pareja cómo pensaron” // “Discuss your thinking with your partner.”
  • 1 minute: partner discussion
  • Record responses.

Student Facing

photograph

¿Cuántos cubos hay en el tazón?

Escribe una estimación que sea:

muy baja razonable muy alta
\(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Qué haría más fácil encontrar el número exacto de cubos?” // “What would make it easier to find the exact number of cubes?” (If the cubes were organized in a way that we could count groups. If we could see them all.)

Activity 1: 126 cubos (15 minutes)

Narrative

The purpose of this activity is for students to review the concept that volume is the number of unit cubes required to fill a space without gaps or overlaps. Students are asked to find all of the different ways that they can arrange 126 sugar cubes to create a rectangular prism. This provides practice with factoring since the side lengths will be factors of 126. If students struggle to find factors of 126, it may be worthwhile to pause early on in the task and discuss the different strategies students are using to find factors of 126.

A variety of different suggestions for how to pack the cubes should be anticipated and encouraged with the focus on how students decide on a particular shape of rectangular prism. In practice, many concerns influence the actual choice such as the amount of packaging material needed and how the package fits on a store shelf. When students interpret the meaning of the numbers in the context, they reason abstractly and quantitatively (MP2).

The goal of the synthesis is to share ideas about predictions for how the cubes are packaged and how students decided they should be packaged.

MLR7 Compare and Connect. Synthesis: Invite partners to prepare a visual display that shows the strategy they used to pack the sugar cubes. Encourage students to include details that will help others interpret their thinking. For example, using different colors, shading, arrows, labels, notes, diagrams or drawings. Give students time to investigate each others’ work. During the whole-class discussion, ask students, “¿Alguien resolvió el problema de la misma manera, pero lo explicaría de otra forma?” // “Did anyone solve the problem the same way, but would explain it differently?”
Action and Expression: Develop Expression and Communication. Synthesis: Give students access to cubes to build smaller rectangular prisms and invite students to make connections to the task.
Supports accessibility for: Visual-Spatial Processing, Attention, Organization

Launch

  • Groups of 2
  • Display the image from the student workbook:

    photograph

  • “Estos son cubos de azúcar. Se usan para endulzar el café o el té. ¿Alguien ha visto o ha probado alguna vez un cubo de azúcar?” // “These are sugar cubes. They are used to sweeten coffee and tea. Has anyone ever seen or tasted a sugar cube?”
  • “Ustedes van a investigar distintas maneras en las que pueden organizar 126 cubos para formar un prisma rectangular y luego van a mirar un ejemplo” // “You are going to investigate different ways you can arrange 126 cubes to make a rectangular prism and then look at a particular example.”

Activity

  • 2 minutes: independent work time
  • 5–7 minutes: partner work time

Student Facing

En una compañía se empacan 126 cubos de azúcar en cada caja. Cada caja es un prisma rectangular.

photograph
  1. ¿Cuáles son algunas maneras posibles de empacar los cubos?

  2. ¿Cuál manera escogerías para empacar los cubos? Explica o muestra cómo razonaste.
  3. Los lados de la caja miden aproximadamente \(1\frac{7}{8}\) pulgadas, \(3\frac{3}{4}\) pulgadas y \(4\frac{3}{8}\) pulgadas de longitud. ¿Qué podemos decir sobre cómo se empacan los cubos de azúcar?

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Invite students to share different ways they suggested packing the cubes and their reasoning for the choice.
  • “¿Cómo encontraron las distintas longitudes de lado?” // “How did you find the different side lengths?” (I divided 126 by different numbers and used multiplication facts I knew to find other combinations.)
  • “¿Por qué no sería útil organizar los cubos de azúcar en forma de un prisma rectangular de 1 por 1 por 126?” // “Why is a 1 by 1 by 126 arrangement not useful for packaging the sugar cubes?” (It would be too long. It would break easily. It would be difficult to handle.)

Activity 2: Una antigua estructura gigante y una moderna (15 minutes)

Narrative

The purpose of this activity is for students to solve problems about the volume of different buildings. While students can find products of the given numbers, those products do not represent the volume of the structure. In both cases, the Great Pyramid of Egypt and the Empire State Building, neither structure is a rectangular prism. The pyramid steadily decreases in size as it gets taller while the Empire State Building also decreases in size at higher levels but not in the same regular way as the pyramid. With not enough information to make a definitive conclusion, students can see that both structures are enormous and that their volumes are roughly comparable, close enough that more studying would be needed for a definitive conclusion (MP1).

Launch

  • Groups of 2
  • To help understand how large the Great Pyramid and the Empire State Building are, consider estimating the size of the classroom. Estimates will vary but should be a few hundred cubic meters (versus several million for these huge structures).

Activity

  • 5 minutes: independent work time
  • 5 minutes: partner work time
  • Monitor for students who
    • use the standard algorithm for multiplication
    • make estimates rather than using the standard algorithm for multiplication
    • identify that it is not possible with the given information to find the exact volume of either structure

Student Facing

  1. La base de la Gran Pirámide de Egipto es un cuadrado. Los lados de la base miden 230 metros de longitud cada uno. La pirámide mide 140 metros de alto. Si la forma de la pirámide fuera un prisma rectangular, ¿cuál sería el volumen del prisma?

    photograph, 2 pyramids
  2. El Empire State Building se encuentra en la ciudad de Nueva York. Su base mide 129 metros por 59 metros. El edificio mide 373 metros de alto. Estima el volumen del Empire State Building.

  3. ¿Cuál crees que es más grande: la Gran Pirámide o el Empire State Building? Explica o muestra cómo razonaste.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Invite students to share their calculations for the volumes of the 2 structures.
  • “¿Por qué es difícil encontrar el volumen exacto de la Gran Pirámide?” // “Why is it hard to find the exact volume of the Great Pyramid?” It’s not a rectangular prism. It has slanted sides.)
  • “¿El producto del área de la base y la altura es mayor que el volumen de la pirámide o es menor? ¿Cómo lo saben?” // “Is the product of the area of the base and the height larger than the volume of the pyramid or smaller? How do you know?” (Larger because the pyramid does not fill all of that space. It gets more and more narrow toward the top.)
  • “¿Por qué es difícil encontrar el volumen exacto del Empire State Building?” // “Why is it hard to find the exact volume of the Empire State Building?” (It’s also not a rectangular prism. It also gets narrower toward the top.)
  • “¿Cuál estructura creen que tiene un mayor volumen?” // “Which do you think has greater volume?” (I think it’s too close to tell. I think the Great Pyramid is bigger because it looks like the base of the Empire State Building does not go up very far. It gets a lot narrower quickly. The Great Pyramid gets narrower more gradually.)

Lesson Synthesis

Lesson Synthesis

“Al comienzo del año exploramos el volumen. ¿Qué recuerdan sobre el trabajo que hicimos en la unidad 1?” // “We started the year by exploring volume. What do you remember about the work we did in unit 1?” (We used cubes. We learned formulas.)

“¿Cómo usaron lo que aprendieron en la unidad 1 en la lección de hoy?” // “How did you apply what you learned in unit 1 in today’s lesson?” (I knew that the volume of a rectangular prism is the product of length, width, and height and that it is the product of the area of a base and the height. I used those formulas to calculate prism volumes.)

“El volumen de los bloques que se usaron en la Gran Pirámide de Egipto es aproximadamente 1 metro cúbico. ¿Aproximadamente cuántos bloques se usaron para construir la Gran Pirámide?” // “The blocks used in the great pyramid in Egypt have a volume of about 1 cubic meter. About how many blocks were used to build the Great Pyramid?” (There are probably more than one million. There are about 2 million.)

Cool-down: Reflexiona sobre el volumen (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.