Lesson 1

Encontremos el producto más grande

Warm-up: Observa y pregúntate: Dígitos (10 minutes)

Narrative

The purpose of this warm-up is for students to discuss the location of digits in the products, which will be useful when students try to find the greatest product in a later activity. While students may notice and wonder many things, the location of the digits 6, 4, 1, and 8 is the important discussion point.

Launch

  • Groups of 2
  • Display the image.

Activity

  • “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?”
  • 1 minute: quiet think time
  • 1 minute: partner discussion
  • Share and record responses.

Student Facing

¿Qué observas? ¿Qué te preguntas?

multiplication algorithm
multiplication algorithm

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “Sin encontrar los valores, ¿cuál producto creen que va a ser mayor? Expliquen cómo razonaron” // “Without finding the values, which product do you think will be greater? Explain your reasoning.” (I think \(841 \times 6\) will be greater because 841 is a lot more than 641. I think \(641 \times 8\) will be larger because there is 4,800 in each and the second product has more 41s.)
  • “Vamos a retomar estos problemas en la síntesis de la lección” // “We are going to revisit these problems in the lesson synthesis.”

Activity 1: Hablemos de eso (15 minutes)

Narrative

The purpose of this activity is for students to practice using the standard algorithm and explain how the placement of the digits in factors impacts the value of the product when multiplying a two-digit number by a one-digit number. Students multiply different factors which use the same 3 digits and determine which combination yields the greatest product. While the problems were intentionally structured to encourage students to use an efficient strategy, such as the algorithm, students should use whatever strategy makes sense to them when solving these problems.

Students critically analyze a claim about the largest product that can be made with 3 digits and discuss their reasoning with several partners (MP3). 

MLR8 Discussion Supports. During group work, invite students to take turns sharing their responses. Ask students to restate what they heard using precise mathematical language and their own words. Display the sentence frame: “Te escuché decir . . .” // “I heard you say . . . .” Original speakers can agree or clarify for their partner.
Advances: Listening, Speaking
Action and Expression: Internalize Executive Functions. Before they begin, invite students to verbalize a strategy they can use to determine whether they agree or disagree with each statement. Students can speak quietly to themselves, or share with a partner.
Supports accessibility for: Organization, Conceptual Processing, Language

Launch

  • Groups of 2
  • “Van a discutir una afirmación durante 2 rondas. En la primera ronda, lean la afirmación y expliquen por turnos si están de acuerdo, en desacuerdo o no están seguros. Después, cambien de grupo y completen la ronda 2” // “You will discuss a talking point in 2 rounds. In the first round, read the statement and take turns explaining whether you agree, disagree, or are unsure. Then we will switch groups and complete Round 2.”
  • Partner work time: 2–3 minutes

Activity

  • After partner work time, rearrange students into groups of 4. New groups of 4 should be formed where partners are not in the same group.
  • “Ahora van a completar la ronda 2 con su nuevo grupo. Cada persona del grupo tendrá tiempo para expresar nuevamente su razonamiento” // “Now, you will complete Round 2 in your new group. Each person in the group will be given time to restate their reasoning.”
  • 1–2 minutes: group discussion
  • “Decidan si quieren reconsiderar lo que pensaron y prepárense para explicar por qué cambiaron de idea. Cada persona del grupo va a decir si cambió su respuesta o no, y va a explicar por qué sí o por qué no” // “Decide if you want to revise your thinking and be prepared to explain why you changed your thinking. Each person in the group will say whether or not they changed their answer and explain why or why not.”
  • 1–2 minutes: small-group discussion
  • “Piensen en algo nuevo que hayan aprendido al discutir con su grupo o algo que todavía se pregunten” // “Think about something new that you learned from your group or something that you are still wondering about.”
  • 1–2 minutes: independent work time
  • 1-2 minutes: partner discussion
  • “Ahora usen lo que aprendieron para completar el segundo problema” // “Now, use what you learned to complete the second problem.”
  • 1-2 minutes: independent work time

Student Facing

  1. Piensa en la afirmación que está abajo. Decide si estás de acuerdo, en desacuerdo o no estás seguro. Prepárate para explicar cómo razonaste.
    de acuerdo en desacuerdo no estoy seguro
    A partir de los dígitos 7, 5 y 2, el producto más grande que se puede formar es \(75\times2\) porque 75 es el número más grande que se puede formar.
    Después de la ronda 1: A partir de los dígitos 7, 5 y 2, el producto más grande que se puede formar es \(75\times2\) porque 75 es el número más grande que se puede formar.

    Escribe algo nuevo que hayas aprendido al discutir con tu grupo o algo que todavía te preguntes:

  2. Usa los dígitos 6, 3 y 1 para formar el producto más grande posible. Prepárate para explicar cómo razonaste.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Display:

    \(72\times 5 =(70\times 5)+(2\times5)\)

    \(52\times 7 =(50\times 7)+(2\times 7)\)

  • “¿Por qué \(52\times 7\) es mayor que \(72\times5\)?” // “Why is \(52\times 7\) greater than \(72\times5\)?” (The product of ones and tens is the same in these products but \(52 \times 7\) has a larger product of ones and ones.)
  • “¿Qué aprendieron sobre la posición de los dígitos cuando se multiplica un número de dos dígitos por un número de un dígito?” // “What did you learn about placement of digits when multiplying a two-digit number by a one-digit number?”

Activity 2: Más dígitos (20 minutes)

Narrative

The purpose of this activity is for students to practice using the standard algorithm and to use place value reasoning to explain how the placement of the digits in factors impacts the value of the product when multiplying (MP7). 

Launch

  • Groups of 2
  • Display:

    7, 3, 2, 5

  • “Si usamos solo estos dígitos, ¿qué expresiones de multiplicación podemos escribir?” // “Using only these digits, what multiplication expressions could we write?” (\(723 \times 5\), \(32 \times 57\), \(7 \times 3 \times2 \times 5\), \(73 \times 5 \times 2\).)
  • 1 minute: quiet think time
  • Record answers for all to see.
  • “¿Cuál de estas expresiones creen que va a tener el mayor producto? Prepárense para explicar cómo razonaron” // “Which of these expressions do you think would make the greatest product? Be prepared to explain your reasoning.” (I think the three-digit by one-digit expression would make the greatest product because you can put the 7 in the hundreds place.)
  • “Usen los dígitos 7, 3, 2 y 5 para formar el mayor producto” // “Use the digits 7, 3, 2, and 5 to make the greatest product.”

Activity

  • 5–7 minutes: partner work time

Student Facing

  1. Usa los dígitos 7, 3, 2 y 5 para formar el mayor producto.
  2. Explica o muestra cómo sabes que has formado el mayor producto.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students need help getting started, refer to the products generated during the launch and ask students to evaluate them. Ask them to order the products from least to greatest and explain what they notice. Next, ask them to generate other products using the same digits. Continue to check in with them and ask them to explain any patterns they notice.

Activity Synthesis

  • “¿Cuál expresión de multiplicación va a tener el mayor producto?” // “Which multiplication expression will have the greatest product?”
  • Poll the class.
  • Record responses for all to see.
  • Display or write these expressions for all to see:
    multiplication algorithm
    multiplication algorithm
  • “¿Por qué al intercambiar las posiciones del 5 y del 7 aumenta el valor del producto?” // “Why does switching the placement of the 5 and the 7 increase the value of the product?” (Both products have 35 hundreds, but when 7 is the second factor, the product has 7  groups of 32 instead of 5 groups.)
  • Display or write these expressions for all to see:
    multiplication algorithm
    multiplication algorithm
  • “¿Por qué al intercambiar las posiciones de los dígitos 2 y 3 aumenta el valor del producto?” // “Why does switching the placement of the digits 2 and 3 increase the value of the product?” (Both products have partial products \(50 \times 70\) and \(2 \times 3\), but when we switch the digits 2 and 3, the partial products in \(72 \times 53\) are greater.)

Lesson Synthesis

Lesson Synthesis

Display or write these products for all to see.

multiplication algorithm
multiplication algorithm

“Estos son los problemas del calentamiento. ¿Alguien quiere reconsiderar lo que pensó sobre cuál es el mayor producto?” // “Here are the problems from the warm-up. Does anyone want to revise their thinking about which one is the greater product?” (\(641 \times 8\) because both products will have 4,800, but there will be two more groups of 41 in \(641 \times 8\).)

“Hoy exploramos maneras de organizar los dígitos para formar el mayor producto. Tuvimos que resolver muchos problemas de multiplicación. Mencionen algo nuevo que aprendieron hoy sobre la multiplicación” // “Today we explored ways to arrange digits to make the greatest product. We had to solve a lot of multiplication problems. What is something new that you learned about multiplication today?” (I never realized how many different problems you could create with the same digits. I was surprised by some of the largest products. I thought \(841 \times 6\) would be larger than \(641 \times 8\).)

Cool-down: Multiplica 2 dígitos por 2 dígitos (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.