Lesson 4

Usemos capas para encontrar el volumen

Warm-up: Exploración de estimación: ¿Cuántos cubos? (10 minutes)

Narrative

The purpose of this warm-up is for students to consider the information they need to find the volume of a rectangular prism and use the structure of a rectangular prism to think about a reasonable estimate. Students can see the 9 cubes on the front layer, but it is difficult to see how many layers there are.

The purpose of an Estimation Exploration is to think about reasonableness based on experience and known information. It gives students a low-stakes opportunity to share a mathematical claim and the thinking behind it (MP3). Making an estimate or a range of reasonable answers with incomplete information is a part of modeling with mathematics (MP4).

Launch

  • Groups of 2
  • Display image
  • “¿Qué estimación sería muy alta?, ¿muy baja?, ¿razonable?” // “What is an estimate that’s too high?” “Too low?” “About right?”

Activity

  • 1 minute: quiet think time
  • 1 minute: partner discussion
  • Share and record responses

Student Facing

Rectangular prism. 3 cubes by unknown number between 8 to 10 cubes. Height is 3 cubes.

¿Aproximadamente cuántos cubos se usaron para construir este prisma?

Escribe una estimación que sea:

muy baja razonable muy alta
\(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Por qué los múltiplos de 9 son buenas estimaciones?” // “Why are multiples of 9 good estimates?” (We can see the layer of 9.)
  • “¿Qué información les ayudaría a encontrar el número exacto de cubos del prisma?” // “What information would help you to find the exact number of cubes in the prism?” (How many layers of 9 cubes there are. How deep the prism goes.)
  • “A partir de esta discusión, ¿alguien quiere ajustar su estimación?” // “Based on this discussion does anyone want to revise their estimate?”
  • Optional: Reveal a picture that shows the number of layers, 10.
    Rectangular prism.

Math Community

  • Ask students to reflect on both individual and group actions while considering the question “¿Qué normas o expectativas tuvimos en mente cuando hicimos matemáticas juntos en nuestra comunidad matemática?” // “What norms, or expectations, were we mindful of as we did math together in our mathematical community?”
  • Record and display their responses under the “Norms”​ ​header.

Activity 1: Capas de prismas rectangulares (20 minutes)

Narrative

In the previous lesson, students reasoned abstractly about the volume of rectangular prisms when they considered the volume in terms of layers or equal groups of unit cubes. This activity continues to develop the idea of decomposing rectangular prisms into layers. Students explicitly multiply the number of cubes in a base layer by the number of layers. Students can use any layer in the prism as the base layer as long as the height is the number of those base layers.

Action and Expression: Internalize Executive Functions. Synthesis: Invite students to plan a strategy, including the tools they will use, for finding volume of partially filled prisms. If time allows, invite students to share their plan with a partner before they begin.
Supports accessibility for: Conceptual Processing, Memory

Required Materials

Materials to Gather

Required Preparation

  • Have connecting cubes available for students who need them.

Launch

  • Groups of 2
  • Display first image from student workbook
  • “¿Qué saben sobre el volumen de este prisma?” // “What do you know about the volume of this prism?”
  • “¿Qué necesitarían para encontrar el volumen exacto de este prisma?” // “What would you need to find out to find the exact volume of this prism?”
  • “En esta actividad, van a trabajar con prismas que solo están llenos parcialmente” // “You are going to work with prisms that are only partially filled in this activity.”
  • Give students access to connecting cubes.

Activity

  • 5 minutes: independent work time
  • 5 minutes: partner work time
  • As students work, monitor for:
    • students who notice that prisms A and D and prisms B and C are “the same” but they are sitting on different faces so the layers might be counted in different ways.
    • students who reason about the partially filled prisms by referring to the cubes in one layer they would see if all of the cubes were shown.
    • students who recognize that there are several different layers they can use to determine the volume of a prism, all of which result in the same volume.

Student Facing

Rectangular prism. Base shown with cubes: 2 cubes by 7 cubes. Height partially shown with 3 cubes. 
  1. Completa la tabla. Prepárate para explicar tu razonamiento.

    prisma número de cubos en una capa número de capas volumen
    A \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\)
    B \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\)
    C \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\)
    D \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\)

    \(\phantom{\hspace{2.5cm}}\)

    Prisma ARectangular prism. 2 cubes by 3 cubes by 4 cubes. 
    Prisma BRectangular prism. 3 cubes by 5 cubes by 2 cubes. 
    Prisma CRectangular prism partially filled. Base shown as 3 cubes by 2 cubes. Height shown as 5 cubes. 
    Prisma DRectangular prism, partially filled with cubes. Base shown as 4 cubes by 2 cubes. Height shown as three cubes. 
  2. Encuentra el volumen de cada prisma. Explica o muestra tu razonamiento.

    Prisma ERectangular prism. 4 cubes by 1 cubes by 2 cubes. 

    \(\phantom{\hspace{2.5cm}}\)

    Prisma FPartially filled Rectangular prism. 2 cubes wide. 7 cubes long. 6 cubes high.

  3. ¿Cómo puedes encontrar el volumen de cualquier prisma rectangular?

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Display the expressions:
    • \(2 \times 12\)
    • \(3 \times 8\)
  • “¿Cómo representan estas expresiones el volumen del prisma A?” // “How do these expressions represent the volume of prism A?” (There are two layers of 12. We can also see 3 layers of 8.)
  • “¿Cómo nos ayuda pensar en capas a encontrar el volumen de prismas que no están completamente llenos?” // “How does thinking about layers help us find the volume of prisms that are not completely filled?” (I know that all the layers have the same number of cubes even if they are not shown.)

Activity 2: Encontremos el volumen de diferentes maneras (15 minutes)

Narrative

In the previous activity, students saw that a rectangular prism is composed of layers and there are different ways to decompose a prism into layers, depending on how students view the prism and decompose the prism. Students recognize that the volume remains the same, regardless of the orientation of the prism. The goal of this activity is for students to identify how different expressions represent the volume of the same prism and correspond to the organization of the layers. Students have worked with parentheses in previous grades, so the lesson synthesis provides an opportunity for students to revisit expressions with parentheses. Students will have more experience with evaluating expressions with grouping symbols in future lessons. Students go back and forth between numerical expressions and a geometric object whose volume is represented by the expression (MP2).

MLR7 Compare and Connect. Synthesis: Ask, “¿En qué se parecen y en qué son diferentes las estrategias usadas para calcular el volumen del prisma rectangular?” // “what is the same and what is different about the strategies used to calculate the volume of the rectangular prism?” Add labels or annotations to a visible display to support connections between approaches, and to amplify language such as layers, horizontal, vertical, volume and expression.
Advances: Representing, Conversing.

Required Materials

Materials to Gather

Required Preparation

  • Have connecting cubes available for students who need them.

Launch

  • Groups of 2
  • “Van a analizar varias maneras de encontrar el volumen de un prisma rectangular” // “You are going to analyze different ways to find the volume of a rectangular prism.”
  • Give students access to connecting cubes.

Activity

  • 5 minutes: independent work time
  • 5 minutes: group work time
  • Monitor for students who identify the factor 5 or 6 as the number of layers and the second factor is then the number of cubes in each layer.

Student Facing

Rectangular prism. 6 cubes by 4 cubes by 5 cubes. 
  1. Explica o muestra cómo la expresión \(5\times24\) representa el volumen de este prisma rectangular.
  2. Explica o muestra cómo la expresión \(6\times20\) representa el volumen de este prisma rectangular. 
  3. Encuentra una manera diferente de calcular el volumen de este prisma rectangular. Explica o muestra tu razonamiento.
  4. Escribe una expresión para representar la manera en la que calculaste el volumen.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students do not explain how the expression represents the volume of the prism, ask “¿Puedes explicar cómo encontrarías el volumen de este prisma?” // “Can you explain how you would find the volume of this prism?” Then, connect the student’s description to the numbers in the expressions.

Activity Synthesis

  • “¿Cómo la expresión \(5 \times 24\) representa el volumen del prisma?” // “How does \(5 \times 24\) represent the volume of the prism?” (There are 5 layers if I cut the prism horizontally and each layer has 24 cubes in it.)
  • Display expression: \(5\times(4\times6)\)
  • “¿Cómo representa esta expresión el volumen del prisma?” // “How does this expression represent the volume of the prism?” (It shows the 5 layers and the 24 cubes as 4 rows of 6 cubes in each layer.)
  • “¿Cómo la expresión \(6\times20\) representa el volumen del prisma?” // “How does \(6\times20\) represent the volume of the prism?” (There are 6 layers if I cut vertically along the front face. Each layer has 5 rows of 4 or 20 cubes.)
  • Display expression: \(6\times(4\times5)\).
  • “¿Cómo representa esta expresión el volumen del prisma?” // “How does this expression represent the volume of the prism?” (It shows the 6 layers and 4 columns of 5 cubes in each layer.)

Lesson Synthesis

Lesson Synthesis

Display the image from the warm-up showing all the layers of the prism.

“Descríbanle a su pareja las capas del prisma. ¿Qué expresión de multiplicación podría representar el volumen del prisma? ¿Cómo representa la expresión el volumen del prisma?” // “Describe the layers in the prism to a partner. What is a multiplication expression that would represent the volume of the prism? How does the expression represent the volume of the prism?” (\(10 \times 9\), there are 9 cubes in each layer and I can see 10 layers.)

Math Community

Revisit the “Norms”​ ​list. Ask students to discuss with a partner when a norm was helpful as they did math. Add any missing ideas or revise earlier ones.

Cool-down: Usa expresiones (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.

Student Section Summary

Student Facing

A la cantidad de espacio que ocupa un objeto la llamamos volumen. El volumen de este prisma es 120 cubos.

Rectangular prism. 6 cubes by 4 cubes by 5 cubes. 

Para encontrar el volumen de cualquier prisma, podemos encontrar el número de cubos que hay en una capa y multiplicarlo por el número de capas. Podemos describir este prisma como un prisma que tiene 6 capas de 20 cubos, 4 capas de 30 cubos o 5 capas de 24 cubos. Podemos usar todas estas expresiones para representar el volumen del prisma:
\(5\times24\), \(5\times(6\times4)\)
\(6\times20\), \(6\times(5\times4)\)
\(4\times30\), \(4\times(5\times6)\)