Lesson 11

Todo tipo de prismas

Warm-up: Cuál es diferente: Muchos prismas (10 minutes)

Narrative

This warm-up prompts students to compare four images. It gives students a reason to use language precisely (MP6). It gives the teacher an opportunity to hear how students use terminology and talk about characteristics of the items in comparison to one another.  During the synthesis, ask students to explain the meaning of any terminology they use such as volume, base, height, length, and width.

Launch

  • Groups of 2
  • Display the image.
  • “Escojan una que sea diferente. Prepárense para explicar por qué es diferente” // “Pick one that doesn’t belong. Be ready to share why it doesn’t belong.”

Activity

  • 1 minute: quiet think time
  • 2–3 minutes: partner discussion
  • Share and record responses.

Student Facing

¿Cuál es diferente?

ARectangular prism. 5 cubes by 5 cubes by 3 cubes. 
BRectangular prism. 6 units by 5 units by 7 units. 
CRectangular prism. 6 cubes by 5 cubes base shown. Height unknown.
D

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Qué tienen en común las figuras A, C y D?” // “What do Figures A, C, and D have in common?” (They all show individual cubes. They all have 5 as one of their side lengths.)

Activity 1: Palooza de prismas (20 minutes)

Narrative

The purpose of this activity is for students to practice finding the volume of rectangular prisms given a real-world context. The first problem provides a diagram like students have seen in earlier lessons to illustrate the context. The other problems do not provide a picture so students will need to visualize or draw a sketch of the situation. Going from the words of the problem to a mental image to a solution strategy are all important aspects of making sense of and solving a problem (MP1).
Because these are real-world problems, each rectangular prism sits on a natural base. Monitor for students who use this structure and use the formula connecting volume to the area of the base and the height relative to that base.

MLR6 Three Reads. Keep books or devices closed. Display only the problem stem and picture, without revealing the question. “Vamos a leer esta pregunta 3 veces” // “We are going to read this question 3 times.” After the 1st Read: “Cuéntenle a su compañero de qué se trata la situación” // “Tell your partner what this situation is about.” After the 2nd Read: “Hagan una lista de las cantidades. ¿Qué se puede contar o medir?” // “List the quantities. What can be counted or measured?” Reveal the question. After the 3rd Read: “¿Qué estrategias podemos usar para resolver este problema?” // “What strategies can we use to solve this problem?”
Advances: Reading, Representing

Launch

  • Groups of 2

Activity

  • 8 minutes: individual work time
  • 2 minutes: partner discussion
  • Monitor for students who find the volume in different ways, either using different bases or using 3 measurements for the length, width, and height.

Student Facing

Para cada problema, explica o muestra tu razonamiento.
  1. Han está llenando una caja con cubos. Abajo se muestra un diagrama de la caja. ¿Cuántos cubos caben en la caja si Han la llena por completo sin dejar espacios entre los cubos?

    Rectangular prism, partially filled with cubes. 10 cubes by 6 cubes by 5 cubes. 
  2. Clare compró una caja para sus materiales de arte. La caja mide 4 pies de ancho, 9 pies de largo y 5 pies de alto. ¿Cuál es el volumen de la caja?
  3. El cuarto nuevo de Mai tiene un vestidor con un piso que mide 30 pies cuadrados. El techo de su vestidor está a 9 pies del piso. ¿Cuál es el volumen de su vestidor?

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Ask selected students to share their solutions for the second problem.
  • “¿En qué se parecen estas estrategias? ¿En qué son diferentes?” // “How are the strategies the same? How are they different?” (They both got the same solution, but one person multiplied \(4\times9\) to get the area of the base and then multiplied the result by 5, but the other person chose to multiply \(4\times5\) first.)
  • “¿En qué es diferente el tercer problema de los primeros dos?” // “How is the third problem different from the first two?” (It does not give us the length and width of the closet. It just gives the area of the floor.)

Activity 2: Resolvamos problemas con figuras (15 minutes)

Narrative

The purpose of this activity is for students to solve a real-world problem that involves finding the volume of a figure composed of two right rectangular prisms. Unlike many other figures students have seen, this one can be decomposed into two rectangular prisms in only one way. Students may rearrange the two prisms to make a single, long rectangular prism.

Action and Expression: Develop Expression and Communication. Give students access to graph paper or connecting cubes as tools to use to design their own garden.
Supports accessibility for: Visual-Spatial Processing, Conceptual Processing, Organization

Launch

  • Display the picture of the garden from the student workbook:
    Picture of a garden composed of 2 rectangular prisms.
  • “Este tipo de jardín se llama un jardín de cama elevada porque las plantas no están en el suelo” // “This type of garden is called a raised bed garden because the plants are not in the ground.”
  • “Si sembráramos un jardín en nuestra escuela, ¿qué vegetales les gustaría sembrar?” // “If we planted a garden at our school, what vegetables would you want to grow?”

Activity

  • 5 minutes: individual work time
  • 5 minutes: partner discussion
  • Monitor for students who break the garden into two rectangular prisms, finding the volume of each, and for students who put them together to form a single rectangular prism.

Student Facing

La escuela primaria va a construir un jardín de cama elevada como el que se muestra en la foto, pero van a usar un diseño diferente. Este diagrama muestra las longitudes de los lados del jardín que la escuela va a construir.

Two rectangular prisms, attached to form a T. 
  1. ¿Cuál es el volumen del jardín? Explica o muestra tu razonamiento.
  2. Escribe una expresión para representar el volumen del jardín.

    V-shaped raised bed garden. 
  3. Noah quiere diseñar un jardín con el mismo volumen pero con diferentes longitudes de lado. ¿Cuáles podrían ser las longitudes de lado de su jardín?
  4. ¿Cuál diseño de jardín te gusta más? Explica o muestra tu razonamiento.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Display the diagram of the garden from the task.
  • Invite students to share how they found its volume.
  • “¿Qué tienen en común las dos partes del jardín?” // “What do the two parts of the garden have in common?” (They are both 4 feet tall and 3 feet wide.)
  • “¿En qué son diferentes las dos partes del jardín?” // “What is different about the two parts of the garden?” (The length. One piece is 10 feet long and the other piece is 8 feet long.)
  • “¿Cómo podemos juntar las partes para formar un solo prisma rectangular?” // “How could you put the pieces together to make a single rectangular prism?” (The sides that are 3 feet by 4 feet fit together and the length would be 18 feet.)

Lesson Synthesis

Lesson Synthesis

“En esta unidad trabajaron mucho con prismas y volumen. ¿Qué cosas saben sobre el volumen y los prismas rectangulares?” // “In this unit, you did a lot of work with prisms and volume. What are some things you know about volume and rectangular prisms?”

Share and record students’ responses.

Display these images from the unit:

Prism.
Rectangular prism.
Unfilled prism.
Rectangular prism. 5 by 4 by 8 units.
Figure composed of two rectangular prisms.
Two rectangular prisms, attached to form a T. 

“Hablen con su vecino. Comenten cuál parte de la unidad fue su favorita y por qué. ¿Cómo les ayudó su trabajo con los cubos en el resto del trabajo sobre volumen en la unidad?” // “Talk to your neighbor. Discuss which part of the unit was your favorite and why. How did working with the cubes help you with the rest of the volume work in the unit?”

Cool-down: El volumen de un arenero (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.

Student Section Summary

Student Facing

Algunas figuras están formadas por dos prismas rectangulares. Podemos descomponer estas figuras y encontrar el volumen de cada prisma. Después, sumamos los volúmenes de los dos prismas para encontrar el volumen total de la figura.

Figure composed of two attached prisms.

Con frecuencia hay más de una manera de descomponer las figuras formadas por 2 prismas rectangulares. Estas expresiones se pueden usar para encontrar el volumen de la figura:
\((3 \times 3 \times 5) + (5 \times 2 \times 5)\)
\((3 \times 5 \times 5) + (2 \times 2 \times 5)\)