Lesson 7
Formas de encontrar la longitud desconocida (parte 1)
Warm-up: Conversación numérica: Varios tercios (10 minutes)
Narrative
This Number Talk encourages students to use multiplicative reasoning and to rely on properties of operations to mentally find the value of products of a whole number and a fraction. The reasoning elicited here will be helpful later in the lesson when students find the perimeter of a figure with fractional side lengths.
Launch
- Display one expression.
- “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
- 1 minute: quiet think time
Activity
- Record answers and strategy.
- Keep expressions and work displayed.
- Repeat with each expression.
Student Facing
Encuentra mentalmente el valor de cada expresión.
- \(6 \times \frac{1}{3}\)
- \(30 \times \frac{1}{3}\)
- \(60 \times \frac{2}{3}\)
- \(90 \times \frac{2}{3}\)
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “¿Qué tienen en común estas expresiones?” // “What do these expressions have in common?” (The first number in each sequence is a multiple of 3 and a multiple of 6. The second number is a fraction with 3 in the denominator.)
- “Para encontrar cada producto, ¿cómo les ayudaron estas observaciones sobre los números?” // “How did these observations about the numbers help you find each product?”
- Consider asking:
- “¿Alguien puede expresar el razonamiento de _____ de otra forma?” // “Who can restate _____’s reasoning in a different way?”
- “¿Alguien usó la misma estrategia, pero la explicaría de otra forma?” // “Did anyone have the same strategy but would explain it differently?”
- “¿Alguien pensó en la expresión de otra forma?” // “Did anyone approach the expression in a different way?”
- “¿Alguien quiere agregar algo a la estrategia de _____?” // “Does anyone want to add on to _____’s strategy?”
Activity 1: Todo el camino alrededor (20 minutes)
Narrative
In this activity, students find the perimeter of several shapes and write expressions that show their reasoning. Each side of the shape is labeled with its length, prompting students to notice repetition in some of the numbers. The perimeter of all shapes can be found by addition, but students may notice that it is efficient to reason multiplicatively rather than additively (MP8). For example, they may write \(4 \times 6\frac{1}{3}\) instead of \(6\frac{1}{3} + 6\frac{1}{3} + 6\frac{1}{3} + 6\frac{1}{3}\).
Advances: Speaking
Launch
- Groups of 2–4
Activity
- 3–4 minutes: independent work time
- 2 minutes: group discussion
Student Facing
-
Encuentra el perímetro de cada figura. Escribe una expresión que muestre cómo encontraste el perímetro.
- Compara tus expresiones con las expresiones de tu compañero. Haz 1 o 2 observaciones.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Invite students to share the expressions they wrote for the perimeter of each shape. Record the expressions.
- For each shape, ask: “¿En qué se parecen estas expresiones? ¿En qué son diferentes?” // “What is the same about these expressions? What is different?” (They each use the side lengths in the shape. They each show the total length around the shape. Some use addition, some use multiplication, some use both multiplication and addition.)
- Highlight that when two or more sides have the same length, the perimeter can be found by adding, multiplying, or a combination of both.
Activity 2: Reflexión sobre el perímetro (15 minutes)
Narrative
Earlier, students found the perimeter of polygons when all the side lengths were given. In this activity, only some of the sides are labeled with their length, but students are given some information about the attributes of the shapes (presence or absence of parallel sides and symmetry). Students use that information to determine the length of the unlabeled sides and the perimeter. They may also conclude that the length of the perimeter cannot be determined.
When students interpret and analyze Mai's and Andre's reasoning about the quadrilateral perimeters they critique the reasoning of others (MP3).
This activity uses MLR3 Clarify, Critique, and Correct. Advances: reading, writing, representing
Supports accessibility for: Conceptual Processing, Memory, Attention
Required Materials
Materials to Gather
Launch
- Groups of 2
- Provide access to patty paper.
- 2 minutes: quiet think time for the first question
Activity
- 2 minutes: partner discussion about Mai and Andre's reasoning
- Monitor for students who use symmetry and what they know about parallel sides in their response.
- 3–4 minutes: independent work time
Student Facing
Estas son cuatro figuras y lo que sabemos sobre ellas:
- A, B y C no tienen líneas de simetría.
- A no tiene lados paralelos.
- B tiene 1 par de lados paralelos.
- C tiene 2 pares de lados paralelos.
- D tiene 1 par de lados paralelos y 1 línea de simetría.
Mai dice: “No podemos encontrar el perímetro de ninguno de los cuadriláteros porque en cada uno faltan una o más longitudes de lado”.
Andre está en desacuerdo. Él dice: “Podemos encontrar los perímetros de C y D, pero no los de A y B”.
- ¿Estás de acuerdo con alguno de ellos? Explica o muestra tu razonamiento.
- Encuentra los perímetros que sea posible hallar, si es que es posible encontrar alguno.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Read Mai’s reasoning aloud.
- “¿Qué piensan que Mai quiere decir? ¿Qué no está claro? ¿Hay errores?” // “What do you think Mai means? What is unclear? Are there any mistakes?”
- 1 minute: quiet think time
- 2 minute: partner discussion
- “Escriban con su compañero una explicación ajustada para Mai” // “With your partner, work together to write a revised explanation for Mai.”
- Display and review the following criteria:
- “No podemos encontrar el perímetro de un cuadrilátero si faltan una o más longitudes de lado y _____” // “We can’t find the perimeter of a quadrilateral if one or more side lengths are missing and _____.”
- 3–5 minute: partner work time
- Select 1–2 groups to share their revised explanation with the class.
- Record responses as students share.
- “¿Cómo supieron que el perímetro de C se podía encontrar al sumar dos veces 4 cm y dos veces \(7\frac{1}{2}\) cm o \((2 \times 4) + (2 \times 7\frac{1}{2})\)?” // “How did you know that the perimeter of C can be found by combining twice 4 cm and twice \(7\frac{1}{2}\) cm or \((2 \times 4) + (2 \times 7\frac{1}{2})\)?” (We saw earlier that when quadrilaterals have two pairs of parallel sides, opposite sides have the same length. If the sides are parallel, they are the same distance apart.)
- “¿Cómo supieron que el lado sin marcar en la figura D también medía \(7\frac{1}{2}\) cm?” // “How did you know the unlabeled side in Shape D is also \(7\frac{1}{2}\) cm long?” (The figure has a line of symmetry through the midpoint of the top and bottom segment.)
- “¿Qué expresión podemos escribir para el perímetro de D?” // “What expression can we write for the perimeter of D?” (\(4 + 5\frac{3}{4} + 7\frac{1}{2} + 7\frac{1}{2}\) or \(4 + 5\frac{3}{4} + (2 \times 7\frac{1}{2})\) or equivalent)
Activity 3: Expresiones de perímetro [OPTIONAL] (10 minutes)
Narrative
This optional activity gives students an additional opportunity to use the attributes and their emerging understanding of the properties of some categories of shapes to find their perimeter, or to conclude that the perimeter cannot be determined.
Required Materials
Materials to Gather
Launch
- Groups of 2
- Provide access to patty paper.
Activity
- 3–4 minutes: quiet think time
- 2 minutes: partner discussion
- Monitor for students who use symmetry and the properties of parallelograms in their response.
Student Facing
Estas son cinco figuras y lo que sabemos sobre ellas.
- No todos los lados están marcados.
- Se muestran las líneas de simetría.
- Solamente el triángulo no tiene lados paralelos.
- ¿Para cuáles figuras es posible encontrar el perímetro? ¿Para cuáles figuras no es posible encontrar el perímetro? Prepárate para explicar cómo lo sabes.
-
Estas son cuatro expresiones. Cada una representa el perímetro de una figura. En cada expresión, el \(6\frac{1}{2}\) y el \(3\frac{1}{4}\) representan longitudes de lado. ¿Puedes saber cuál figura está representada por cada expresión?
- \((2 \times 6\frac{1}{2}) + 3\frac{1}{4}\)
- \(4 \times 6 \frac{1}{2}\)
- \((2 \times 6\frac{1}{2}) + (4 \times 3\frac{1}{4})\)
- \((2 \times 6\frac{1}{2}) + (2 \times 3\frac{1}{4})\)
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Advancing Student Thinking
If students begin to label all opposite sides with the same length, consider asking:
- “¿Cómo sabes que estos dos lados tienen la misma longitud?” // “How do you know these two sides have the same length?”
- “¿Qué necesitas saber sobre una figura para asegurarte de que cualquier lado sin marcar tiene la misma longitud que los lados marcados?” // “What do you need to know about a shape to be sure that any unlabeled sides have the same length as the labeled sides?”
Activity Synthesis
- Invite students to share how they knew for which shapes it is possible to find the perimeter and for which it is not.
- Select other students to share how they matched the expressions and the shapes.
Lesson Synthesis
Lesson Synthesis
“Hoy encontramos el perímetro de varias figuras planas. Algunas veces los lados estaban marcados con sus longitudes. Otras veces no” // “Today we found the perimeter of various flat figures. Sometimes the sides were labeled with their lengths. Other times they were not.“
“¿Están de acuerdo con las siguientes afirmaciones? Encuentren una imagen de la lección de hoy que apoye su respuesta” // “Do you agree with the following statements? Find an image from today’s lesson that supports your answer.”
Display and read, one at a time:
-
“Si una figura es simétrica con respecto a una línea, algunas veces podemos saber las longitudes de los segmentos aunque no todos los segmentos estén marcados” // “If a figure has line symmetry, we can sometimes tell the lengths of the segments even when not all segments are labeled.”
(Agree. If the lengths of the segments on one side of the line of symmetry are known, we can tell the lengths on the other side. See figure D in Activity 2 and figures X, Y, and Z in Activity 3.)
-
“Si una figura no es simétrica con respecto a una línea, no podemos saber cuáles son las longitudes de los segmentos que no estén marcados” // “If a figure shows no line symmetry, we can’t tell the lengths of unlabeled segments.”
(Disagree. Sometimes we can tell. For example, a parallelogram has no line symmetry, but we know their opposite sides are the same length. See parallelogram C in Activity 2 and parallelogram W in Activity 3.)
Cool-down: ¿Cuál es el perímetro? (5 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.