Lesson 13

Encontremos medidas de ángulos

Warm-up: Observa y pregúntate: Piezas de las esquinas (10 minutes)

Narrative

This warm-up prompts students to visualize the idea of arranging angles around a point and adding their measurements as more pieces are added. The angles are familiar angles: \(90^\circ\), \(180^\circ\), and \(270^\circ\). Students previously arrived at these benchmarks by decomposing a full turn or \(360^\circ\). Here, they compose a full turn from \(90^\circ\) angles.

The work here familiarizes students with the context and mathematics that might be involved later in the lesson. In the subsequent activities, students will compose and decompose paper cutouts of angles to determine angle measurements.

Launch

  • Groups of 2
  • Display the image.
  • “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?”
  • 1 minute: quiet think time

Activity

  • “Discutan con su pareja lo que pensaron” // “Discuss your thinking with your partner.”
  • 1 minute: partner discussion
  • Share and record responses. 

Student Facing

¿Qué observas? ¿Qué te preguntas?

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Cuál creen que es la medida de cada uno de los ángulos?” // “What angles do you think are the measurement of each angle?” (They look like \(90^\circ\), \(180^\circ\), and \(270^\circ\) angles.)
  • “¿Cómo lo saben?” // “How do you know?” (If the paper is a rectangle, then the corner pieces are right angles or \(90^\circ\) each. Two of the corner pieces would be \(90+90\). Three pieces would be \(90+ 90+90\).)
  • “¿Qué ángulo obtenemos si agregamos la última pieza de la esquina?” // “What angle would we get if we add the last corner piece?” (\(360^\circ\))

Activity 1: ¿Qué tan grandes son estos ángulos? (25 minutes)

Narrative

In this activity, students use their knowledge of \(90^\circ\), \(180^\circ\), and \(360^\circ\) and paper cutouts of some acute angles to determine the measurements of those angles. They then use those measurements to compose and find the measurements of larger angles.

No explicit directions for finding the angles are given, so students have an opportunity make sense of the problem and use what they know about the additivity of angles to find the angle measures (MP7). If requested, give students access to rectangular sheets of paper whose square corners could be torn off.

This activity uses MLR5 Co-Craft Questions. Advances: Reading, Writing.

Required Materials

Materials to Gather

Materials to Copy

  • How Big Are These Angles?

Required Preparation

  • Create 4 copies of each angle (\(p\), \(q\), \(r\), and \(s\)) from the blackline master for each group of 2–4 students.
  • Cut out the angles in advance, or prepare scissors and extra time for students to cut out the angles.
  • If using patty paper instead of cutouts of the angles, each student needs 1–2 sheets of patty paper.

Launch

  • Groups of 2–4
  • Give each group the cutouts of the four angles, 4 copies of each angle per group, or if using patty paper, give 1–2 sheets to each student.
  • If using patty paper, demonstrate that it can be used for tracing the angles.

Activity

MLR5 Co-Craft Questions
  • Display only the image to the first problem without revealing the question.
  • “Escriban una lista de preguntas matemáticas que se podrían hacer acerca de esta imagen” // “Write a list of mathematical questions that could be asked about this image.” (What is the size of each of the angles? Could we put angles together to make right angles? Would all of the angles make a straight line? Which angle is closest to 90 degrees and how far away from 90 degrees is it?)
  • 2 minutes: independent work time
  • 2–3 minutes: partner discussion
  • Invite several students to share one question with the class. Record responses.
  • “¿En qué se parecen estas preguntas? ¿En qué son diferentes?” // “How are these questions alike? How are they different?” (Most questions are related to the size of the angles.)
  • Reveal the task (students open books), and invite additional connections.
  • Monitor for groups who:
    • compose 2 copies of angle \(p\) or 3 copies of angle \(q\) into a right angle
    • compose 2 copies of angle \(r\) into \(q\)
    • compose angles \(p\) and \(q\) into angle \(s\)
  • Pause for a whole-class discussion. Select students or groups who reasoned as previously outlined to share their reasoning.
  • 3–4 minutes: independent work time on the second question
  • 2 minutes: group discussion
  • Monitor for the different ways that smaller angles are used to compose the angles in parts a–d.

Student Facing

Tu profesor te dará materiales que te pueden ayudar a encontrar medidas de ángulos.

  1. Usa los materiales y lo que sabes acerca de un ángulo recto para encontrar el tamaño de los ángulos \(p\), \(q\), \(r\) y \(s\). Prepárate para explicar o mostrar cómo razonaste.
  2. Después, usa las medidas de los ángulos \(p\), \(q\), \(r\) y \(s\) para encontrar las medidas de los siguientes ángulos.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

Offer patty paper to students who may need support using smaller angles to find the size of larger angles. Consider asking: “¿Cómo podría ayudarte trazar los ángulos a comparar los ángulos que conoces con los que no conoces?” // “How might tracing the angles help you compare the angles you know and those you don’t know?”

Activity Synthesis

  • Invite students to share their responses and reasoning for the second question. Display the angles.
  • For each angle in parts a–d, record the different compositions of angles students use to find its measurement. For example:
    • To compose the angle in part a, students may use angles \(p\), \(r\), and \(s\), or they may use 3 copies of \(p\).
    • To find the angle in part c, students may use 3 copies of angle \(s\), or they may draw a line to separate \(180^\circ\) of the angle and fit angle \(p\) in the remaining space.

Activity 2: Los ángulos de una cometa (10 minutes)

Narrative

In this activity, students find the size of angles created by folding paper several times and reasoning about the resulting angles (MP7).

The first fold decomposes the paper into two congruent shapes whose edges line up exactly, and students could see how the folding split two of the angles into equal halves. The subsequent folds decompose an angle into two equal angles, but this may not be obvious to students because the shapes of the two resulting parts are different. (The edges or creases that form the angles are of different lengths.) Students need to remember that angles are not determined by the length of the segments that form it and reason accordingly.

Some students may need support in folding paper precisely. Consider providing a larger sheet of paper or a straightedge to facilitate the folding.

Representation: Access for Perception. Walk students through the steps to fold the paper into a kite, demonstrating with your own paper. Before beginning, and then after each step, invite students to share what they notice about the angles on the paper.
Supports accessibility for: Conceptual Processing, Visual-Spatial Processing

Required Materials

Materials to Gather

Launch

  • Groups of 2–4
  • Give each student a sheet of origami paper or square paper.
  • Display the paper folding diagrams.

Activity

  • 2–3 minutes: independent work time
  • 2–3 minutes: group discussion
  • Monitor for students who recognize that two angles are equal if the edges or creases that form them line up exactly (even if one crease or edge is longer than the other).

Student Facing

Tu profesor te dará una hoja de papel cuadrada. Sigue los pasos para doblar tu papel y formar una cometa. Trata ser lo más preciso posible al hacer los dobleces.

¿Puedes encontrar la medida de cada uno de los ángulos que están marcados en la cometa? Si es así, muestra cómo razonaste. Si no, explica por qué no.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

Students may benefit from reasoning about angle sizes concretely. Consider providing a piece of paper and asking after the first fold: “¿Cómo podemos saber cuál es el tamaño de los ángulos que hemos creado hasta este momento?” // “How might we tell the size of the angles we have created at this point?” and “¿Cómo podemos revisar lo que hemos pensado o mostrar que es correcto?” // “How can we check our thinking or show that it is correct?”

Activity Synthesis

  • Invite students to share their responses and reasoning.
  • “¿Cómo podemos saber si se formaron parejas de ángulos del mismo tamaño con el primer doblez?” // “How can we tell if the first fold resulted in pairs of equal-size angles?” (The two triangles are identical and match up exactly, which means the angles in the two halves are the same.)
  • “Las figuras que se forman con el segundo y con el tercer doblez no son la misma. ¿Esos dobleces también producen ángulos del mismo tamaño?” // “The shapes that result from the second and third folds are not the same. Do those folds produce equal-size angles as well?” (Yes. The edges of the resulting angles match up exactly and meet at the same endpoint, so the angles are the same size.)
  • “¿Cuál ángulo es más grande: \(b\) o \(e\)?” // “Which angle is larger, \(b\) or \(e\)?” (They are the same, both are \(45^\circ\). Angle \(b\) is half of 90. Angle \(e\) is twice \(22.5^\circ\).)

Lesson Synthesis

Lesson Synthesis

“Hoy usamos diferentes operaciones para encontrar las medidas de varios ángulos” // “Today we used different operations to find the measurement of different angles.”

Display:

“Estos son algunos ángulos a los que intentamos encontrarles sus medidas: el ángulo \(p\), el ángulo \(s\) y algunos ángulos compuestos por ángulos más pequeños. Usamos diferentes operaciones para encontrar las medidas desconocidas” // “Here are some angles whose measurements we tried to find: angle \(p\), angle \(s\), and some angles composed of smaller angles. We used different operations to find the unknown measurements.”

“¿Cuál de estos ángulos podemos encontrar si usamos la división?” // “Which of these angles can we find by using division?” (Angle \(p\): If we know that 2 copies of \(p\) make a right angle, which is \(90^\circ\), then dividing \(90^\circ\) by 2 gives us the measure of \(p\).)

“¿Cuál ángulo desconocido podemos encontrar si multiplicamos?” // “Which unknown angle can we find by multiplication?” (The angle made up of four \(30^\circ\) angles has a measurement of \(4 \times 30\).)

“¿Cuál ángulo desconocido podemos encontrar si le restamos un ángulo a otro?” // “Which unknown angle can we find by subtracting one angle from another?” (Angle \(s\): We can subtract \(30^\circ\) from \(180^\circ\) and divide by 2 to find the measure of \(s\), which is \(75^\circ\).)

“¿Cuál ángulo desconocido podemos encontrar si sumamos los ángulos que conocemos?” // “Which unknown angle can we find by adding known angles?” (Once we know the measure of angle \(s\), we can find the last angle: \(15 + 75 + 15\), which is \(105^\circ\).)

Cool-down: Grupos de tres ángulos (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.