Lesson 4

Resolvamos problemas de comparación multiplicativa con números grandes

Warm-up: Observa y pregúntate: ¿Demasiadas veces más? (10 minutes)

Narrative

The purpose of this warm-up is to elicit the idea that discrete diagrams can be inefficient for representing larger numbers, which will be useful when students interpret and use more abstract tape diagrams later in the lesson. While students may notice and wonder many things about the diagram, ideas and questions for how the student could better represent the comparison are the important discussion points.

Launch

  • Groups of 2
  • Display the image.
  • “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?”
  • 1 minute: quiet think time

Activity

  • “Discutan con su compañero lo que pensaron” // “Discuss your thinking with your partner.”
  • 1 minute: partner discussion
  • Share and record responses.

Student Facing

¿Qué observas? ¿Qué te preguntas?

photograph of student work.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿El diagrama muestra que Clare leyó 8 veces el número de páginas que Noah leyó?” // “Does this diagram show that Clare read 8 times as many pages as Noah?” 
  • “¿Por qué creen que el estudiante que dibujó este diagrama tachó algunas partes?” // “Why do you think the student who drew this diagram scribbled parts out?” (Maybe they ran out of space. There wasn’t enough room to draw all the pages the same size and keep them together in groups.)
  • “¿Qué puede ser retador al dibujar cada página cuando hay muchos objetos?” //  “What might be challenging about drawing each page when there are lots of objects?” (It takes a lot of time and space. You might lose count.)
  • “¿De qué otra manera podrían hacer un diagrama para mostrar cantidades más grandes?” // “What other ways could you make a diagram to show larger amounts?” (Use numbers instead of drawing each part.)
  • “Hoy vamos a examinar diagramas que muestran comparaciones con números más grandes y vamos a pensar en cuándo podríamos usarlos para representar y resolver nuestros propios problemas” // “Today we are going to look at diagrams that show comparisons with larger numbers and think about when we might use them to represent and solve our own problems.”

Activity 1: Un nuevo tipo de diagrama (15 minutes)

Narrative

The purpose of this activity is for students to interpret and solve multiplicative comparison problems. Students interpret tape diagrams that label each box with a value, which is different from the discrete diagrams from previous lessons. They also write equations to represent the situations and explain how the equations connect to the tape diagrams (MP2). The problems in this activity have unknown smaller quantities, larger quantities, or multipliers. Questions are provided to support students in representing the unknown in tape diagrams and identifying the unknown in given situations.

Action and Expression: Develop Expression and Communication. Provide alternative options for expression. Encourage students to examine each diagram first and write down or talk about what they know with a partner before answering each set of questions.
Supports accessibility for: Visual-Spatial Processing, Language

Launch

  • Groups of 2
  • Display and read the first problem.
  • 30 seconds: quiet think time
  • 1 minute: partner discussion
  • “¿15 páginas es una estimación muy alta o muy baja de lo que Andre leyó?” // “Is 15 pages too high or low of an estimate for Andre?” (Too low, because the diagram shows he should have read more than Mai.)
  • “Si Andre leyó 9 veces lo que Mai leyó, ¿con qué número se debería reemplazar el signo de interrogación en el diagrama? ¿Por qué?” // “If Andre read 9 times as much as Mai, what number should replace the question mark in the diagram? Why?” (135 Because the 9 rectangles represent 9 times as many as 15. There should be 9 fifteens.) 
  • 30 seconds: quiet think time
  • 1 minute: partner discussion

Activity

  • 3 minutes: independent work time
  • 8 minutes: partner work time
  • Monitor for students who:
    • explain the connection between their equations and the diagram.
    • show understanding that each rectangle represents the same amount.

Student Facing

  1. Mai y Andre comparan el número de páginas que leyeron el primer día del concurso de lectura.

    diagram. two rectangles.

    ¿Cuál sería una buena estimación del número de páginas que leyó Andre?

  2. El diagrama muestra las páginas que Lin y Kiran leyeron un día durante el concurso de lectura.

    diagram. two rectangles.
    1. Completa la afirmación y explica cómo lo sabes.

      Kiran leyó _____ veces el número de páginas que Lin leyó.

    2. Escribe una ecuación de multiplicación que compare el número de páginas que leyeron Lin y Kiran.

    3. ¿Cuántas páginas leyó Kiran en total ese día?

  3. Jada leyó algunas páginas. Han leyó 60 páginas en total.​​​​​​

    diagram. two rectangles.
    1. ¿Han leyó cuántas veces el número de páginas que Jada leyó? Explica cómo lo sabes.
    2. Escribe una ecuación de multiplicación para comparar el número de páginas que leyeron Han y Jada. Usa un símbolo para representar el número desconocido.
    3. ¿Cuántas páginas leyó Jada? Explica cómo lo sabes.

  4. Elena leyó 72 páginas. Clare leyó 9 páginas.

    diagram. two rectangles.
    1. ¿En qué se diferencia este diagrama de los anteriores?
    2. Escribe una ecuación de multiplicación para comparar el número de páginas que leyeron Elena y Clare. Usa un símbolo para representar el número desconocido.
    3. ¿Elena leyó cuántas veces el número de páginas que Clare leyó?

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students write equations without unknowns, consider asking, “¿Qué información sabes con sólo mirar el diagrama? ¿Qué información falta? ¿Qué necesitas encontrar?” // “What information do you know from looking at the diagram? What information is missing? What do you need to find?” Allow students to analyze the diagram and then ask, “Antes de encontrar el valor desconocido, ¿qué ecuación puedes escribir para representar esta situación? Usa un símbolo para representar el valor desconocido” // “Before you find the missing value, what equation could you write to represent this situation? Use a symbol to represent the missing value.”

Activity Synthesis

  • Select 2–3 students to share their responses and reasoning. 
  • “¿Cómo nos ayudan los diagramas a comprender lo que sabemos sobre la situación y lo que necesitamos encontrar?” // “How do the diagrams help us figure out what we know about the situation and what we need to find out?” (Each diagram shows two quantities being compared, and the ‘times as many’ amount that compares them. The quantity that is missing is the part we need to find out.)
  • “¿Cómo muestran los diagramas el número de veces?” // “How do the diagrams show times as many?” (‘Times as many’ is represented by the number of times each rectangle in  the diagram is repeated.)
  • Display: \(3 \times {?} = 60\)
  • “¿Cómo nos ayuda esta ecuación a encontrar el número de páginas que leyó Jada?” // “How does this equation help us find the number of pages Jada read?” (We know that Han read 60 pages which is 3 times as many as Jada, because the diagram shows 3 equal sized rectangles for Han and one rectangle for Jada. We just need to know the amount that each rectangle represents, which will be the amount of pages Jada read.)

Activity 2: ¿Quién leyó más? (20 minutes)

Narrative

The purpose of this activity is for students to represent multiplicative comparison situations and solve for an unknown factor or unknown product.

In the synthesis, students make connections between the description, their diagram, and multiplication equations that represent the situation (MP2).

MLR8 Discussion Supports. Synthesis: At the appropriate time, give students 2–3 minutes to make sure everyone in their group can explain strategy, equation, and diagram. Invite groups to rehearse what they will say when they share with the whole class.
Advances: Speaking, Conversing, Representing

Launch

  • Groups of 2
  • Read directions for activity aloud.
  • “¿Qué vamos a hacer en cada problema de esta actividad?” // “What will we do with each problem in this task?” (Write an equation with the unknown represented by a symbol, draw a diagram to show comparison, and answer the question.)

Activity

  • 4 minutes: independent work time
  • 2 minutes: partner discussion about the first problem
  • “Compartan con su compañero cómo representaron el valor desconocido en su diagrama y en su ecuación” // “Share with your partner how you represented the unknown value in your diagram and equation.”
  • “Resuelvan el resto de los problemas con su compañero” // “Work with your partner on the rest of the problems.”
  • 8 minutes: partner work time
  • Monitor for students who: 
    • draw and label each comparison.
    • identify and represent the unknown in their equation and diagram.
    • use “times as many” language to describe each comparison.
  • If students finish early, they can create their own situation and question and trade with their partner. The partner will write the equation, draw a diagram, and answer the question. 

Student Facing

En cada situación:

  • Escribe una ecuación que represente la situación. Usa un símbolo para representar el número desconocido. 
  • Dibuja un diagrama que muestre la comparación.
  • Responde la pregunta sobre la situación.
  1. Diego leyó 8 veces el número de libros que Lin leyó. Lin leyó 7 libros.

    1. Ecuación:
    2. Diagrama:

    3. ¿Cuántos libros leyó Diego?

  2. Tyler tiene algunos libros. Clare tiene 72 libros, que es 12 veces el número de libros que Tyler tiene. 

    1. Ecuación:
    2. Diagrama:

    3. ¿Cuántos libros tiene Tyler?
  3. Noah leyó 13 libros. Elena leyó 130 libros.

    1. Ecuación:
    2. Diagrama:

    3. Completa la afirmación:

      _______________ leyó _____ veces el número de libros que _______________ leyó.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

Students draw a diagram to represent and solve a situation without representing the unknown because it is less intuitive after the solution has been determined. Consider asking, “¿Cuál parte de la ecuación estabas resolviendo?” // “Which part of the equation were you working to solve?” and “¿Qué podrías agregarle a tu representación para ayudar a los demás a entender cómo pensaste?” // “What might you add to your representation to help others understand your thinking?”

Activity Synthesis

  • “¿Qué información usaron en cada situación para saber cómo dibujar cada diagrama?” // “What information did you use in each situation to know how to draw each diagram?” 
    • The number of repeating rectangles in the larger quantity represents “times as many”
    • The row with one rectangle is the amount being multiplied
    • The row with multiple rectangles represents the larger quantity in the comparison
  • “¿En qué se diferencia el último problema de los dos primeros?” // “How is the last problem different from the first two?” (Sample response: The unknown value is  how many “times as many”.)

Lesson Synthesis

Lesson Synthesis

“Hoy usamos diagramas para comparar dos cantidades grandes” // “Today we used diagrams to compare two large quantities.”

Display some diagrams students created to represent \(\underline{\hspace{1 cm}} \times 12 = 72\).

“¿Qué observan acerca de los distintos diagramas que usamos para representar esto?” // “What do you notice about the different diagrams we used to represent this?” (6 sets of 12 or 12 sections with 6 in each)

“¿Por qué conviene más representar el diagrama con un número en lugar de dibujar todas las partes?” // “Why might we represent the diagram with a number instead of drawing all the parts out?” (Drawing all the amounts would take a while and may result in a counting mistake or take up too much space.)

“Los diagramas en los que se usan números para mostrar las cantidades son una herramienta útil para mostrar situaciones de ‘_____ veces’ porque pueden representar cualquier cantidad” // “Diagrams that use numbers to show the quantities are a helpful tool for showing ‘_____ times as many’ situations because they can represent any amount.”

Cool-down: Representa una comparación multiplicativa (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.