Lesson 2
Representaciones de grupos iguales de fracciones
Warm-up: Conversación numérica: Tres, seis, nueve, doce (10 minutes)
Narrative
This Number Talk encourages students to use their knowledge of multiplication facts, properties of operations, and the structure of the given expressions to mentally solve problems. The reasoning elicited here will be helpful in upcoming lessons as students find products of whole numbers and non-unit fractions (such as \(3 \times \frac{6}{10}\) or \(6 \times \frac{9}{4}\)).
Launch
- Display one expression.
- “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
- 1 minute: quiet think time
Activity
- Record answers and strategy.
- Keep expressions and work displayed.
- Repeat with each expression.
Student Facing
Encuentra mentalmente el valor de cada expresión.
- \(3 \times 6\)
- \(3 \times 9\)
- \(6 \times 9\)
- \(12 \times 9\)
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “¿Qué observaron acerca de los factores de todas las expresiones?” // “What did you notice about the factors in all of the expressions?” (They are all multiples of 3.)
-
“Para encontrar los valores, ¿les ayudó darse cuenta de que todos los factores son múltiplos de 3?” // “Did noticing that all the factors are multiples of 3 help you find the values?” (Sample responses:
- Yes, I was able to think of “3 more groups of something.”
- Yes, it helped me see how the factors were related, which helped me reason about the products.
- No, it didn't, but it made me think that the values would be multiples of 3 as well.)
Activity 1: Clasificación de tarjetas: Expresiones y diagramas (25 minutes)
Narrative
In this activity, students interpret multiplication expressions and diagrams as the number of groups and amount in each group and match representations of the same quantity. They then use their insight from the matching activity to generate diagrams for expressions without a match and to find their values (MP2).
Advances: Speaking, Conversing
Supports accessibility for: Organization, Conceptual Processing
Required Materials
Materials to Copy
- Expressions and Diagrams
Required Preparation
- Create a set of cards from the blackline master for each group of 2.
Launch
- Groups of 2
- Give each group a set of cards from the blackline master.
Activity
- “Con su compañero, emparejen cada expresión con un diagrama que represente la misma situación de grupos iguales y la misma cantidad” // “Work with your partner to match each expression to a diagram that represents the same equal-group situation and the same amount.”
- “Prepárense para explicar cómo saben que la dos representaciones se corresponden” // “Be prepared to explain how you know the two representations belong together.”
- 5 minutes: partner work time
- Monitor for students who reason about the number of groups and amount in each group as they match.
- Pause for a discussion. Select students to share their matches and reasoning.
- Highlight reasoning that clearly connects one factor in the expression to the number of groups and the other factor to the size of each group.
- “Ahora van a completar el diagrama para \(7 \times \frac{1}{8}\) que está incompleto. Luego, van a dibujar un diagrama nuevo para una expresión que no tenga pareja” // “Now you will complete an unfinished diagram for \(7 \times \frac{1}{8}\) and then draw a new diagram for an expression without a match.”
- 5 minutes: independent work time
Student Facing
Tu profesor te va a dar un grupo de tarjetas que tienen expresiones y diagramas.
- Empareja cada expresión con un diagrama que represente la misma cantidad.
- Anota todas las expresiones que no tengan una pareja.
-
Han empezó a dibujar un diagrama para representar \(7 \times \frac{1}{8}\), pero no lo terminó. Completa su diagrama. Prepárate para explicar tu razonamiento.
-
Escoge alguna expresión de las que anotaste (una que no tenga pareja).
Dibuja un diagrama que se pueda representar con la expresión. ¿Qué valor representan las partes sombreadas de tu diagrama?
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Advancing Student Thinking
If students are not yet matching expressions to appropriate diagrams, consider asking them to compare the diagrams for \(5 \times 3\) and \(5 \times \frac{1}{3}\) and reason about the number of groups and the size of each group. Consider asking: “¿En qué se parecen? ¿En qué son diferentes?” // “How are these alike? How are they different?”
Activity Synthesis
- “¿Qué le hacía falta al diagrama de Han? ¿Cómo lo saben?” // “What was missing from Han’s diagram? How do you know?” (4 more groups of \(\frac{1}{8}\) were missing, because \(7 \times \frac{1}{8}\) means 7 groups of \(\frac{1}{8}\)and there are only 3 in Han’s diagram.)
- “Si la expresión fuera para 7 grupos de \(\frac{1}{3}\) en vez de \(\frac{1}{8}\), ¿cómo cambiaría el diagrama de Han?” // “If the expression was for 7 groups of \(\frac{1}{3}\) instead of \(\frac{1}{8}\) how would Han’s diagram change?” (Each rectangle representing 1 would have 3 equal parts with 1 shaded.)
- Select students to share the diagrams they drew for the expressions without a match. Ask them to point out the number of groups and size of each group in each diagram.
Activity 2: Distintas representaciones (10 minutes)
Narrative
This activity prompts students to use their earlier observations to generate a diagram or expression that represents equal groups of unit fractions when one or the other is given. In one of the problems, only the total quantity (\(\frac{7}{2}\)) is given, so students need to reason in about the number of groups and the size of each group that could lead to this value. Finally, they analyze two different ways of representing \(4 \times\frac{1}{3}\) with a diagram, which further illustrates that the value of the expression is \(\frac{4}{3}\).
Launch
- Groups of 2
- “Explíquenle a su compañero lo que se debe hacer para completar el primer problema” // “Turn to a partner and explain what needs to be done to complete the first problem.”
Activity
- “Completen el primer problema individualmente. Después, hagan una pausa para discutir con toda la clase” // “Complete the first problem independently. Afterwards, pause for a class discussion.”
- 5 minutes: independent work time
- Pause to discuss the fraction \(\frac{7}{2}\) in the first problem.
-
“¿Cómo supieron qué diagrama y qué expresión tendrían el valor \(\frac{7}{2}\)?” // “How did you know what diagram and expression would have the value \(\frac{7}{2}\)?” (Sample response:
- For the diagram, the numerator, 7, is the number of groups, and the denominator, 2, shows how many parts are in 1 whole.
- For the expression, I multiplied a whole number and a fraction. The whole number was the same as the number in the numerator of \(\frac{7}{2}\) and the fraction has the same number as the denominator of \(\frac{7}{2}\).)
- “Trabajen con su compañero en el último problema” // “Work on the last problem with your partner.”
- 5 minutes: partner work time
Student Facing
-
-
Escribe una expresión de multiplicación que represente las partes sombreadas del diagrama. Después, encuentra el valor de la expresión.
Diagrama:
Expresión:
Valor:
-
Dibuja un diagrama que se pueda representar con la expresión \(6 \times \frac{1}{3}\). Después, encuentra el valor de la expresión.
Diagrama:
Expresión: \(6 \times \frac{1}{3}\)
Valor:
-
Dibuja un diagrama y escribe una expresión que tenga el valor \(\frac{7}{2}\).
Diagrama:
Expresión:
Valor: \(\frac{7}{2}\)
-
-
Para representar \(4 \times \frac{1}{3}\), Diego dibujó este diagrama:
Elena dibujó este diagrama:
¿Están representando la misma expresión y el mismo valor? Muestra o explica cómo lo sabes.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Advancing Student Thinking
Students may be unsure about how to begin writing expressions for fractions. Remind students that the fraction will be written as a whole number times a unit fraction. Consider asking: “¿Cómo te podría ayudar esto a escribir la expresión?” // “How might this help to write the expression?”
Activity Synthesis
- See lesson synthesis.
Lesson Synthesis
Lesson Synthesis
“Hoy analizamos expresiones y diagramas que representan grupos iguales e hicimos algunas de estas representaciones” // “Today we analyzed expressions and diagrams that represent equal groups and created some of these representations.”
Display or sketch these diagrams:
“¿Cómo sabemos cuál diagrama representa \(3 \times \frac{1}{5}\)? ¿En qué lugar del diagrama vemos cada número?” // “How do we know which diagram represents \(3 \times \frac{1}{5}\)? Where do we see each number in the diagram?” (B represents \(3 \times \frac{1}{5}\) because it shows 3 groups of \(\frac{1}{5}\).)
“¿Qué expresión representa el otro diagrama?” // “What expression does the other diagram represent?” (A represents \(5 \times \frac{1}{3}\), because it shows 5 groups with \(\frac{1}{3}\) in each group.)
“¿Cuál es el valor de \(3 \times \frac{1}{5}\)? ¿Cómo lo sabemos?” // “What is the value of \(3 \times \frac{1}{5}\)? How do we know?” (\(\frac{3}{5}\). We can count the number of shaded fifths and see that there are 3.)
“¿Cuál es el valor de \(5 \times \frac{1}{3}\)?” // “What is the value of \(5 \times \frac{1}{3}\)?” (\(\frac{5}{3}\))
Cool-down: Grupos iguales de fracciones (5 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.