Lesson 3

El mismo denominador o numerador

Warm-up: Conversación numérica: Cientos más (10 minutes)

Narrative

The purpose of this Number Talk is to elicit strategies and understandings students have for adding and subtracting multi-digit numbers. These understandings help students develop fluency and will be helpful in later units as students add and subtract multi-digit numbers fluently using the standard algorithm.

When students decompose addends to support mental addition they are looking for and making use of the base-ten structure of numbers (MP7). 

Launch

  • Display one expression.
  • “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
  • 1 minute: quiet think time

Activity

  • Record answers and strategy.
  • Keep expressions and work displayed.
  • Repeat with each expression.

Student Facing

Encuentra mentalmente el valor de cada expresión.

  • \(136 + 100\)
  • \(136 + 300\)
  • \(136 + 370\)
  • \(136 + 378\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Cómo les ayudaron las primeras dos expresiones a pensar en las últimas dos expresiones?” // “How did the first couple of expressions help you reason about last two expressions?”
  • Consider asking:
    • “¿Alguien puede expresar el razonamiento de _____ de otra forma?” // “Who can restate _____’s reasoning in a different way?”
    • “¿Alguien usó la misma estrategia, pero la explicaría de otra forma?” // “Did anyone have the same strategy but would explain it differently?”
    • “¿Alguien pensó en esa expresión de otra forma?” // “Did anyone approach the expression in a different way?”
    • “¿Alguien quiere agregar algo a la estrategia de _____?” // “Does anyone want to add on to _____’s strategy?”

Activity 1: Fracciones que tienen el mismo denominador (15 minutes)

Narrative

The purpose of this activity is to prompt students to reason about the relative sizes of two fractions with the same numerator and articulate how they know which one is greater. Students have done similar reasoning work (and used similar tools to support their reasoning) in grade 3, but here the fractions include those with denominators 5 and 10. When students observe that 5 equal parts are greater than 3 of the same equal part, regardless of the size of those parts, they see regularity in repeated reasoning (MP8).

To add movement to this activity and if time permits, assign each group a pair of fractions in the second question and ask them to create a visual display showing their reasoning. Then, allow a few minutes for a gallery walk. Ask students to identify any patterns they notice on the displays.

Engagement: Provide Access by Recruiting Interest. Provide choice and autonomy. Provide access to colored pencils students can use to label each rectangle. 
Supports accessibility for: Attention, Organization

Launch

  • Groups of 2

Activity

  • “Respondan en silencio las primeras tres preguntas durante unos minutos. Discutan su trabajo con su pareja antes de responder la última pregunta” // “Take a few quiet minutes to answer the first three questions. Discuss your work with your partner before moving on to the last question.”
  • 5–7 minutes: independent work time
  • 3–4 minutes: partner discussion
  • 2–3 minutes: independent work time on the last question

Student Facing

  1. Este diagrama muestra un grupo de tiras de fracciones. Marca cada rectángulo con la fracción que representa.
    Fraction Strips.

  2. Para cada una de estas parejas, marca la fracción mayor. Si te ayuda, usa el diagrama de las tiras de fracciones.

    1. \(\frac{3}{4}\)  o  \(\frac{5}{4}\)
    2. \(\frac{3}{5}\)  o  \(\frac{5}{5}\)
    3. \(\frac{3}{6}\)  o  \(\frac{5}{6}\)
    4. \(\frac{3}{8}\)  o  \(\frac{5}{8}\)
    5. \(\frac{3}{10}\)  o  \(\frac{5}{10}\)
  3. ¿Qué patrón observas en las fracciones que marcaste? ¿Cómo puedes explicar este patrón?
  4. Cuál es mayor: ¿\(\frac{7}{3}\)\(\frac{10}{3}\)? Explica tu razonamiento.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Qué observan sobre cada pareja de fracciones de la segunda pregunta?” // “What do you notice about each pair of fractions in the second question?” (They all have 3 and 5 for the numerators, and they have the same denominator.)
  • “¿Qué quiere decir que dos fracciones, digamos \(\frac{3}{8}\) y \(\frac{5}{8}\), tengan el mismo denominador?” // “What does it mean when two fractions, say \(\frac{3}{8}\) and \(\frac{5}{8}\), have the same denominator?” (They are made up of the same fractional part—eighths in this case.)
  • “¿Cómo podemos saber cuál fracción es mayor?” // “How can we tell which fraction is greater?” (Because the fractional parts are the same size, we can compare the numerators. The fraction with the greater numerator is greater.)

Activity 2: Fracciones que tienen el mismo numerador (20 minutes)

Narrative

The purpose of this activity is for students to reason about the relative sizes of two fractions with the same numerator. As before, a diagram of fraction strips can be used to help students visualize the sizes of various fractional parts. When students discuss and improve their explanation for why \(\frac{70}{20}\) is greater than \(\frac{70}{100}\) they develop their mathematical communication skills (MP3).

This activity uses MLR1 Stronger and Clearer Each Time. Advances: Reading, Writing

Launch

  • Groups of 2
  • “¿Qué observan sobre las fracciones de la primera pregunta?” // “What do you notice about the fractions in the first question?” (Each pair has the same numerator and has 3 and 5 for the denominators.)

Activity

  • “Piensen en silencio por un momento cómo pueden decidir cuál es la fracción mayor de cada pareja. Después, compartan con su pareja lo que pensaron” // “Think quietly for a moment about how you can find out which fraction in each pair is greater. Then, share your thinking with your partner.”
  • 1 minute: quiet think time
  • 2 minutes: partner discussion
  • Monitor for students who use the size of a unit fraction or one fractional part to help them make comparisons.
  • “Trabajen en las preguntas, en silencio, durante unos minutos” // “Take a few quiet minutes to work on the questions.”
  • 7–8 minutes: independent work time

Student Facing

  1. En cada pareja de fracciones, marca la fracción mayor. Si te ayuda, usa el diagrama de las tiras de fracciones.

    1. \(\frac{1}{3}\)  o  \(\frac{1}{5}\)
    2. \(\frac{2}{3}\)  o  \(\frac{2}{5}\)
    3. \(\frac{3}{3}\)  o  \(\frac{3}{5}\)
    4. \(\frac{4}{3}\)  o  \(\frac{4}{5}\)
    5. \(\frac{9}{3}\)  o  \(\frac{9}{5}\)
  2. ¿Qué patrón observas sobre las fracciones que marcaste? ¿Cómo puedes explicar este patrón?
  3. Cuál es mayor: ¿\(\frac{70}{100}\)\(\frac{70}{20}\)? Explica tu razonamiento.
  4. Tyler está comparando \(\frac{4}{10}\) con \(\frac{4}{6}\). Dice: “10 es mayor que 6, entonces \(\frac{4}{10}\) es mayor que \(\frac{4}{6}\)”. Explica o muestra por qué la conclusión de Tyler es incorrecta.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Select students to share their responses to the first two questions. 
  • “En el grupo de fracciones que vieron, ¿por qué las fracciones que tienen 3 en el denominador siempre son mayores que las fracciones que tienen 5 en el denominador?” // “In the set of fractions you saw, why are the fractions with 3 for the denominator always greater than fractions with 5 for the denominator?” (A third is always greater than a fifth, so some number of thirds will always be greater than the same number of fifths.)

MLR1 Stronger and Clearer Each Time

  • “En parejas, compartan su respuesta a la tercera pregunta. Por turnos, uno habla y el otro escucha. Si es su turno de hablar, compartan su explicación. Si es su turno de escuchar, hagan preguntas y comentarios que ayuden a su compañero a mejorar su explicación” // “Share your response to the third question with your partner. Take turns being the speaker and the listener. If you are the speaker, share your explanation. If you are the listener, ask questions and give feedback to help your partner improve their explanation.”
  • 3–5 minutes: structured partner discussion 
  • Repeat with 2–3 different partners.
  • “Ajusten su explicación teniendo en cuenta los comentarios que les hicieron sus compañeros” // “Revise your initial explanation based on the feedback from your partners.”
  • 2–3 minutes: independent work time

Lesson Synthesis

Lesson Synthesis

“Hoy vimos fracciones que tenían el mismo denominador y otras que tenían el mismo numerador” // “Today we looked at fractions with the same denominator and those with the same numerator.”

Select students to share their explanations on the last question in the second activity. “¿Con qué creen que Tyler se confundió? ¿Qué le dirían para aclararle esto?” // “What might have Tyler misunderstood? What would you say to help clear it up for him?” 

“A partir de su trabajo de hoy, ¿cómo completarían estas frases?” // “Based on your work today, how would you complete these sentence starters?”

Display and read aloud:

  • “Si dos fracciones tienen el mismo denominador, para saber cuál es mayor puedo . . .” // “If two fractions have the same denominator, I can tell which one is greater by . . . .“

    (looking at which one has a greater numerator, because it would mean more of the same fractional parts)

  • “Si dos fracciones tienen el mismo numerador, para saber cuál es mayor puedo . . .” // “If two fractions have the same numerator, I can tell which one is greater by . . . .”

    (looking at which denominator is smaller, because the smaller denominator would mean a larger fractional part)

Cool-down: Compara tamaños de fracciones (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.