Lesson 5
Más división
Warm-up: Exploración de estimación: Un cociente grande (10 minutes)
Narrative
Launch
- Groups of 2
- Display the expression.
- “¿Qué estimación sería muy alta?, ¿muy baja?, ¿razonable?” // “What is an estimate that’s too high? Too low? About right?”
Activity
- 1 minute: quiet think time
- 1 minute: partner discussion
- Record responses.
Student Facing
\(9,\!953\div37\)
Escribe una estimación que sea:
muy baja | razonable | muy alta |
---|---|---|
\(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) | \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) | \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) |
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “¿Cómo saben que 100 es una estimación muy baja?” // “How do you know 100 is too low?” (Because \(100 \times 37 = 3,\!700\) and that’s less than 9,953.)
- “¿Cómo pueden usar el valor del producto \(100 \times 37\) para estimar el valor de \(9,\!953 \div 37\)?” // “How can you use the value of the product \(100 \times 37\) to estimate the value of \(9,\!953 \div 37\)?” (I know that 9,953 is more than \(2 \times 3,\!700\) but less than \(3 \times 3,\!700\) so the quotient is more than 200 but less than 300.)
Activity 1: El trabajo de Elena (20 minutes)
Narrative
Launch
- Groups of 2
- “Completen el primer problema” // “Complete the first problem.”
- 1–2 minutes: independent work time
Activity
- “Con su compañero, completen el segundo, el tercer y el cuarto problema” // “Work with your partner to complete the second, third, and fourth problems.”
- 5–7 minutes: partner work time
- “Ahora van a revisar el trabajo que hicieron en el primer problema” // “Now you will have a chance to revisit your work from the first problem.”
- 1–2 minutes: independent work time
- Monitor for students who:
- revised their original solution
- used different partial quotients
Student Facing
-
Encuentra el valor del cociente.
-
Elena encontró el cociente así. ¿La respuesta de Elena es razonable?
Explica o muestra cómo razonaste.
- ¿Con cuáles partes de su trabajo estás de acuerdo? Prepárate para explicar cómo razonaste.
- ¿Con cuáles partes de su trabajo no estás de acuerdo? Prepárate para explicar cómo razonaste.
- Mira tu solución al problema 1. ¿Hay algo que quieras ajustar? Prepárate para explicar.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Invite students to share different partial products.
- Keep student work displayed or display provided solutions.
- “¿En qué se parecen las soluciones? ¿En qué son diferentes?” // “How are the solutions the same? How are they different?” (They both subtract some groups of 100, 10, and 1. They both show that the value of the quotient is 521. The first strategy takes out all the hundreds at once while the second strategy takes out 400 and then 100 more.)
- “¿Por qué los múltiplos de 100 son una buena opción para restar?” // “Why are multiples of 100 good to subtract?” (I can calculate them quickly and they make the number I’m dividing get smaller quickly.)
Activity 2: Practiquemos con cocientes parciales (15 minutes)
Narrative
The purpose of this activity is for students to practice using partial quotients. Students compare their strategy with the strategies of their classmates. They reason about the similarities and differences using their understanding of place value, balancing the complexity of calculations versus subtracting a large amount quickly.
Advances: Listening, Speaking
Supports accessibility for: Conceptual Processing, Social-Emotional Functioning
Launch
- Groups of 2, then 4
- “Ustedes y su compañero van a encontrar cada uno un cociente. Cuando terminen, discutan su trabajo con su compañero” // “You and your partner will each find a quotient independently. After you’re done, discuss your work with your partner.”
Activity
- 3–5 minutes: independent work time
- 1–3 minutes: partner discussion
- “Ahora busquen otro grupo de 2 estudiantes y comparen su trabajo. ¿En qué se parece? ¿En qué es diferente?” // “Now, find another group of 2 and compare your work. How is it the same? How is it different?”
Student Facing
-
Usa cocientes parciales para encontrar el valor de uno de los cocientes. Prepárate para explicar cómo encontraste el cociente.
Compañero A:
Compañero B:
- Explícale a tu compañero cómo encontraste el cociente de tu problema.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Ask selected students who used different partial quotients to share or display or write work as shown below for all to see.
- Display:
- “¿En qué se parecen los cálculos? ¿En qué son diferentes?” // “How are the calculations the same? How are they different?” (They both show that the quotient is 71. One of them finishes very quickly because it starts by taking out 70 groups of 32. The other one takes longer because it subtracts smaller groups of 32.)
- “¿Cuál forma de calcular prefieren?” // “Which calculation do you prefer?” (The one that takes out all of the thirty-twos at once because it is fast. The one that takes more steps because each calculation is easier to do in my head and I know that I can subtract each multiple of 32, that is I am not trying to take out too much.)
Lesson Synthesis
Lesson Synthesis
“Hoy comparamos varias formas de encontrar cocientes enteros. ¿Qué preguntas tienen todavía acerca de cómo encontrar cocientes enteros?” // “Today we compared different ways to find whole number quotients. What questions do you still have about finding whole number quotients?” (Will our method work with larger numbers? Do you always get the same answer no matter which groups you choose to subtract? Is there another way so I don't have to choose the groups at each step?)
Cool-down: Cocientes parciales (5 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.
Student Section Summary
Student Facing
Hemos investigado varias formas de encontrar productos y cocientes, asegurándonos de haber estimado el valor antes de calcularlo. Por ejemplo, el producto \(49 \times 68\) es aproximadamente \(50 \times 70\) o \(3,\!500\). Vimos dos formas diferentes de mostrar las unidades en base diez que se forman.
También usamos productos parciales para encontrar cocientes y descubrimos que hay varias formas de hacer esto.