Lesson 1
Patrones en los valores posicionales
Warm-up: Observa y pregúntate: Los mismos dígitos (10 minutes)
Narrative
The purpose of this warm-up is for students to discuss the multiplicative relationships between the place values of the digits in two numbers. This will be useful when students write multiplication and division expressions to represent place value relationships in a later activity. While students may notice and wonder many things about these numbers, the place value relationships between the digits in the numbers and the numbers themselves are the important discussion points.
Launch
- Groups of 2
- Display the image.
- “¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?”
- 1 minute: quiet think time
Activity
- “Discutan con su compañero lo que pensaron” // “Discuss your thinking with your partner.”
- 1 minute: partner discussion
- Share and record responses.
Student Facing
¿Qué observas? ¿Qué te preguntas?
8,200
820
82
8.2
0.82
0.082
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “Comparen el valor de 8,200 y el valor de 820. ¿Qué pueden decir?” // “How does the value of 8,200 compare to the value of 820?” (It’s 10 times as much.)
- “Comparen el valor de 0.82 y el valor de 0.082. ¿Qué pueden decir? ¿Cómo lo saben?” // “How does the value of 0.82 compare to the value of 0.082? How do you know?” (It’s also ten times as much since there are ten thousandths in a hundredth.)
Activity 1: Muchas ecuaciones verdaderas (20 minutes)
Narrative
The purpose of this activity is for students to express place value relationships using multiplication and division. Students examined decimal place values in depth in the previous unit and used the relationships between the values when they performed arithmetic with decimals. Here they focus on expressing these relationships using multiplication and division. This will be helpful throughout the next several lessons as students examine powers of ten and then use them for measurement conversions.
This activity uses MLR7 Compare and Connect. Advances: representing, conversing.
Required Materials
Materials to Gather
Launch
- Groups of 2
- Display the numbers: 60, 6
- “¿60 es cuántas veces el valor de 6? ¿Cómo lo saben?” // “How many times the value of 6 is 60? How do you know?” (10 times because it’s 6 tens)
- Display the equation: \(60 = 10 \times 6\).
- “¿Qué ecuación de división muestra que 60 es diez veces el valor de 6?” // “What division equation shows that 60 is ten times the value of 6?” (\(60 \div 6 = 10\) is another way of saying that 60 is ten 6s or ten times 6.)
- Display the equation: \(60 \div 6 = 10\).
- “Van a escribir ecuaciones como estas que relacionan distintos números” // “You are going to write equations like these relating different numbers.”
Activity
- 5 minutes: partner work time
- “Creen una presentación visual que muestre sus ecuaciones. Incluyan detalles, como notas, diagramas o dibujos, para ayudar a los demás a entender sus ideas” // “Create a visual display that shows your equations. You may want to include details such as notes, diagrams or drawings to help others understand your thinking.”
- Monitor for students who:
- identify an equation that is incorrect during the gallery walk
- notice place value patterns during the gallery walk
- 2–5 minutes: independent or group work
- 5–7 minutes: gallery walk
Student Facing
Usa los números y los símbolos para escribir todas las ecuaciones verdaderas que puedas y que sean distintas. Puedes usar cada número y cada símbolo más de una vez.
600
0.06
100
60
\(\times\)
10
6
\(\div\)
0.1
0.6
=
0.01
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Invite students to share equations they made.
- Display the equation: \(0.6 \div 10 = 0.06\)
- “¿Cómo saben que esta ecuación es verdadera?” // “How do you know this equation is true?” (When I divide tenths into ten equal pieces I get hundredths so if I divide 6 tenths into 10 equal pieces that's 6 hundredths.)
- “¿Pueden usar la multiplicación para expresar la relación que hay entre 0.6 y 0.06?” // “Can you express the relationship between 0.6 and 0.06 using multiplication?” (Yes. \(0.6 = 10 \times 0.06\).)
- Display the equation: \(600 \times 0.01 = 6\)
- “¿Cómo saben que esta ecuación es verdadera?” // “How do you know this equation is true?” (I know 100 hundredths is 1 so 600 hundredths is 6.)
- “¿Pueden usar la división para expresar la relación que hay entre 600 y 6?” // “Can you express the relationship between 600 and 6 using division?” (Yes. \(600 \div 100 = 6\).)
- Invite students to describe any patterns they noticed.
Activity 2: Describamos relaciones multiplicativas (15 minutes)
Narrative
In the previous activity, students wrote multiplication and division equations relating numbers with a single non-zero digit. The purpose of this activity is to focus on the same set of numbers and describe how the value of the non-zero digit changes when it moves one place to the left or right. This serves to highlight two important patterns that came out in some of the equations of the previous activity:
- The value of a digit is multiplied by 10 when it shifts one place to the left (MP7).
- The value of a digit is multiplied by 0.1 or \(\frac{1}{10}\) when it shifts one place to the right (MP7).
The former idea will be further developed in the next lesson where students examine large numbers and exponential notation and the latter idea will be developed when students examine conversions from a smaller metric unit to a larger metric unit.
Supports accessibility for: Conceptual Processing, Visual-Spatial Processing, Organization
Launch
- Groups of 2
- “Vamos a seguir trabajando con los números de la actividad anterior para explorar más patrones” // “We are going to continue to work with the numbers from the previous activity to explore more patterns.”
Activity
- 5 minutes: individual work time
- 5 minutes: partner work time
Student Facing
\(\displaystyle{600 \phantom{00}\\ \phantom{0}60 \phantom{00}\\ \phantom{00}6 \phantom{0}\\ \phantom{00}0.6 \phantom{0}\\ \phantom{00}0.06 } \)
- Explica o muestra cómo cambia el valor del 6 en los distintos números.
- Si la lista continuara, ¿cuáles números irían antes de 600? Explica tu razonamiento.
- Si la lista continuara, ¿cuáles números irían después de 0.06? Explica tu razonamiento.
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- “¿Qué le pasa al valor del 6 cuando se desplaza una posición hacia la izquierda?” // “What happens to the value of the 6 when it shifts one place to the left?” (It is multiplied by 10.)
- “¿Qué le pasa al valor del 6 cuando se desplaza una posición hacia la derecha?” // “What happens to the value of the 6 when it shifts one place to the right?” (It is multiplied by \(\frac{1}{10}\) or 0.1. It is divided by 10.)
- Invite students to share the numbers that they listed that come before 600 on the list.
-
“¿Creen que pueden seguir anotando números cada vez más grandes con más y más ceros?” // “Do you think you can keep listing bigger and bigger numbers with more and more zeros?”
- Yes, I can always add more zeros.
- I don’t know. After 600,000, I don’t know if I can keep going.
- “En la próxima lección, vamos a ver números muy grandes y veremos cómo se relacionan con multiplicar por 10 una y otra vez” // “In the next lesson we will look at some really big numbers and how they relate to multiplying over and over by 10.”
Lesson Synthesis
Lesson Synthesis
“Hoy examinamos valores posicionales y usamos la división y la multiplicación para expresar las relaciones que hay entre ellos” // “Today we looked at place values and expressed relationships between them using division and multiplication.”
Display: 0.1 and 0.01
“¿Qué ecuación de multiplicación puedo escribir para describir la relación que hay entre una décima y una centésima?” // “What multiplication equation can I write to describe the relationship between a tenth and a hundredth?” (\(0.1 = 10 \times 0.01\), \(0.01 = 0.1 \times 0.1\))
“¿Qué ecuación de división puedo escribir para describir la relación que hay entre una décima y una centésima?” // “What division equation can I write to describe the relationship between a tenth and a hundredth?” (\(0.1 \div 10 = 0.01\).)
Display: 10,000 and 1,000
“¿Pueden usar también la multiplicación y la división para comparar los valores de estos dos números?” // “Can you also compare the value of these two numbers using multiplication and division?” (Yes. I know \(1,\!000 = 10,\!000 \div 10\) and \(10,\!000 = 10 \times 1,\!000\).)
“En las siguientes lecciones, vamos a multiplicar números enteros y números decimales por 10 y a dividirlos entre 10” // “In the next several lessons we will multiply and divide whole numbers and decimals by 10.”
Cool-down: Ecuaciones de multiplicación y de división (10 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.