Lesson 15

Encontremos las longitudes desconocidas de los lados

Warm-up: Exploración de estimación: El jardín (10 minutes)

Narrative

The purpose of this Estimation Exploration is to recall the concept of area. Students need to think strategically because the one point of reference for the size of the grassy area in the image is the car and the road. In order to facilitate mental calculation, expect students to choose multiples of ten for the length and width of the rectangle. 

Launch

  • Groups of 2
  • Display the image.
  • “¿Qué estimación sería muy alta?, ¿muy baja?, ¿razonable?” // “What is an estimate that’s too high?” “Too low?” “About right?”
  • 1 minute: quiet think time

Activity

  • “Discutan con su compañero cómo pensaron” // “Discuss your thinking with your partner.”
  • 1 minute: partner discussion
  • Record responses.

Student Facing

¿Cuál es el área de uno de los rectángulos grandes del jardín?

picture of a garden with large rectangular lawns
Escribe una estimación que sea:
muy baja razonable muy alta
\(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\) \(\phantom{\hspace{2.5cm} \\ \hspace{2.5cm}}\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Qué usaron de la imagen para estimar el área del jardín?” // “What did you use in the image to make an estimate for the area of the garden?” (The car and the person gave me an idea of how big it is.)

Activity 1: Encontremos la longitud desconocida del lado (parte 1) (15 minutes)

Narrative

The purpose of this activity is to use multiplication and division to solve area problems. In most cases the area and one side length are given and students can use division to find the missing side length. In one case the two side lengths are given and students find their product which is the area. 

Launch

  • Display garden from warm-up.
  • “El área de una de las partes rectangulares grandes es 9,175 pies cuadrados y la longitud de uno de los lados es 75 pies” // “The area of one of the large rectangular pieces is 9,175 square feet and the length is 75 feet.”
  • Display:
    Area: 9,175 square feet
    One side length: 75 feet
  • “¿Cuál sería una estimación razonable del ancho?” // “What is a reasonable estimate for the width?” (100 because and \(100 \times 75 = 7,\!500\) and \(7,\!500 \div 75 = 100\).)
  • 2 minutes: partner discussion
  • “¿Cómo podemos encontrar el ancho exacto del jardín?” // “How can we find the exact width of the garden?” (Divide the area by the length.)

Activity

  • 1–2 minutes: quiet think time
  • 5–8 minutes: partner work time
  • Monitor for students who use a partial quotients algorithm to divide to share during the synthesis.
  • If students try to divide to find the missing area, consider asking, “¿Cómo podemos encontrar el área de un rectángulo si conocemos el largo y el ancho?” // “How do we find the area of a rectangle given the length and width?”

Student Facing

Completa la tabla.
área
(pies cuadrados)
largo
(pies)
ancho
(pies)
816 24
1,248 48
23 253
5,796 36

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Ask selected students to share their work and explain their steps.
  • “¿Cómo podemos asegurarnos de que encontramos las longitudes correctas de los lados?” // “How can we make sure that we found the correct missing side lengths?” (Multiply the length and width together to make sure it gives the area or divide the area by one of the side lengths and make sure it gives the other side length.)
  • “Encontraron el área del rectángulo usando el largo y el ancho. También encontraron la longitud de uno de los lados usando el área y la longitud del otro lado. ¿Qué diferencia notaron entre estos dos procesos?” // “How was finding the area of the rectangle using the length and width different than finding one of the side lengths using the area and the other side length?” (I had to multiply to find the area from the length and width. I used division to get one side length from the area and the other side length.)

Activity 2: Encontremos la longitud desconocida del lado (parte 2) (20 minutes)

Narrative

The purpose of this activity is for students to apply what they learned about dividing multi-digit numbers to find the missing side length(s) of rectangular prisms given the volume and at least one other side length. As in the previous activity, both multiplication and division are important to solve the problems. This is true both because finding partial quotients uses multiplication and because they have different choices how to find a missing side length when two side lengths and the volume are given. Monitor for students who

  • find the product of the two given side lengths and then use division to find the third side length. 
  • divide successively by the two given side lengths.
MLR8 Discussion Supports. Prior to solving the problems, invite students to make sense of the situations and take turns sharing their understanding with their partner. Listen for and clarify any questions about the context.
Advances: Reading, Representing
Engagement: Provide Access by Recruiting Interest. Provide choice. Invite students to decide in which order to complete the task and choose what strategy they want to use.
Supports accessibility for: Organization, Social-Emotional Functioning

Launch

  • Groups of 2

Activity

  • 5-8 minutes: independent work time
  • 5 minutes: partner work time
  • Monitor for students who:
    • use a partial quotients algorithm to divide.
    • find the missing side length in the third table by dividing twice, similar to Clare’s steps in the next problem.
    • find the missing length in the third table by first multiplying the given side lengths and then dividing the volume by the product.
    • notice there are multiple possible lengths and widths for the last rectangular prism in the third table

Student Facing

  1. Completa la tabla.
    volumen
    (pies cúbicos)
    base
    (pies cuadrados)
    altura
    (pies)
    375 15
    1,176 28
  2. Clare quiere encontrar la altura de un prisma rectangular que tiene las siguientes medidas:
    volumen
    (pies cúbicos)
    largo
    (pies)
    ancho
    (pies)
    altura
    (pies)
    882 6 7
    1. Clare encuentra primero el cociente \(882 \div 6\). ¿Qué puede hacer ella después para encontrar la altura?
    2. Encuentra la altura desconocida para terminar el problema de Clare.
  3. Completa la tabla.
    volumen
    (pies cúbicos)
    largo
    (pies)
    ancho
    (pies)
    altura
    (pies)
    936 8 9
    1,536 48 2
    1,008 36

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Ask students to share their work and reasoning.
  • Highlight multiple approaches to find the missing side length in the second and third tables.
  • Display second row of third table.
  • “¿De qué maneras diferentes pueden encontrar el largo de este prisma rectangular?” // “What are some different ways you can find the length of this rectangular prism?” (I can first divide the volume by 2 and then divide by 48 or I can multiply 2 and 48 and then divide the volume by that product.)
  • “¿Cuál fue su método preferido? ¿Por qué?” // “Which method did you prefer? Why?” (I divided the volume by 2 and then by 48 as that was quick and kept the numbers smaller.)

Lesson Synthesis

Lesson Synthesis

“Hoy usamos la división para encontrar longitudes desconocidas de lados de rectángulos y prismas rectangulares” // “Today we found missing side lengths of rectangles and rectangular prisms using division.”

Display last row of the table from the last problem of the last activity.

Invite students to share different responses for the width and height.

“¿Cuál es el valor de \(1,\!008 \div 36\)?” // "What is the value of \(1,\!008 \div 36\)?" (28)

“¿Por qué hay más de una opción posible para el ancho y la altura de este prisma rectangular?” // "Why is there more than one solution for the width and height of this rectangular prism?" (I only know that the product of the width and the height is 28. But there are different factors whose product is 28.)

Cool-down: El área del jardín (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.

Student Section Summary

Student Facing

En esta sección, aprendimos cómo dividir números enteros de varios dígitos. Para encontrar un cociente como \(448 \div 16\) separamos 448 en múltiplos de 16 y luego sumamos los cocientes parciales correspondientes.

\(\begin{align} 320\div 16&= 20\\ 80\div 16 &= \phantom{0} 5\\ 48 \div 16 &= \phantom{0} 3\\ \overline {\hspace{5mm}448 \div 16} &\overline{\hspace{1mm}=  28 \phantom{000}}\end{align}\)

Después usamos una forma de registrar esos cálculos, que vimos en un grado anterior.

Divide. four hundred forty eight divided by 16.