Lesson 12

Restemos estratégicamente

Warm-up: Conversación numérica: Por tres (10 minutes)

Narrative

The purpose of this Number Talk is to elicit strategies students have for finding products of single-digit factors. These reasoning strategies help students develop fluency and will be helpful later in this unit when students solve two-step word problems.

When students use strategies based on the properties of multiplication to find unknown products, they look for and make use of structure (MP7). Students may reverse the order of the factors to create a multiplication fact they know. Students may think about “one more group” as they move from the first expression to the second expression (or the third to the fourth). Also, students may say that they “just know” the product. All of these responses are acceptable because students will be in different stages as they progress toward fluency.

Launch

  • Display one expression.
  • “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
  • 1 minute: quiet think time

Activity

  • Record answers and strategy.
  • Keep expressions and work displayed.
  • Repeat with each expression.

Student Facing

Encuentra mentalmente el valor de cada expresión.

  • \(2 \times 6\)
  • \(3 \times 6\)
  • \(2 \times 7\)
  • \(3 \times 7\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Cómo les ayudó pensar en productos de 2 a encontrar productos de 3?” // “How did thinking about products of 2 help you find products of 3?” (I could think about 2 groups, then add one more group. I could think about 2 in each group, then one more in each group.)
  • Consider asking:
    • “¿Alguien puede expresar el razonamiento de _____ de otra forma?” // “Who can restate _____’s reasoning in a different way?”
    • “¿Alguien usó la misma estrategia, pero la explicaría de otra forma?” // “Did anyone have the same strategy but would explain it differently?”
    • “¿Alguien pensó en el problema de otra forma?” // “Did anyone approach the problem in a different way?”
    • “¿Alguien quiere agregar algo a la estrategia de _____?” // “Does anyone want to add on to _____’s strategy?”

Activity 1: ¿Cómo restarían? (20 minutes)

Narrative

The purpose of this activity is for students to choose a strategy or algorithm to subtract within 1,000. Students should attend to the details of numbers in the problems that could indicate whether a particular strategy or algorithm is most useful. The important thing is that students choose an algorithm or another strategy that they can use efficiently and accurately for the given problem. As students choose strategies to find the values of each expression, they look for common structure and observe regularity in repeated reasoning (MP7, MP8).

MLR8 Discussion Supports. Display sentence frames to support partner discussion: “¿Puedes hablar más sobre . . . ?” // “Can you say more about . . .?” and “¿Por qué tú . . . ?” // “Why did you . . .?”
Advances: Conversing, Representing
Engagement: Provide Access by Recruiting Interest. Revisit math community norms to prepare students for the activity in which they will be finding partners, sharing problem solving, and repeating with new partners.
Supports accessibility for: Social-Emotional Functioning

Launch

  • “Hemos estado aprendiendo sobre algoritmos de resta. Recuerden que los algoritmos son solo una de las maneras en las que podemos resolver problemas. También podemos usar otras estrategias o representaciones” // “We’ve been learning about subtraction algorithms. Remember that algorithms are just one way we can solve problems. We can also use other strategies or representations.”
  • “¿Cómo describirían en qué se diferencia un algoritmo de otras estrategias?” // “How would you describe the difference between an algorithm and other strategies?” (A strategy like adding up might work for the one problem you are solving, but an algorithm has steps that work for any problem.)
  • 1 minute: partner discussion
  • Share responses.
  • “Van a tener la oportunidad de encontrar el valor de cada una de estas diferencias usando la estrategia o el algoritmo que prefieran” // “You’re going to have an opportunity to find the value of each of these differences using a strategy or algorithm of your choice.”

Activity

  • “Individualmente, encuentren el valor de cada diferencia. Después, tendrán la oportunidad de compartir su trabajo” // “Work independently to find the value of each difference, then you’ll have a chance to share your work.”
  • 7–10 minutes: independent work time
  • Identify students who use the same strategy to subtract and those who use different ones.
  • Choose a few problems for students to discuss. Consider selecting \(382-190\) (the second expression) and \(600-478\) (the fourth expression), which lend themselves to be evaluated with an algorithm and another strategy, respectively.
  • “Encuentren un compañero que haya restado de la misma forma que ustedes. Discutan cómo razonaron” // “Find a partner who subtracted the same way you did. Discuss your reasoning.”
  • 1–2 minutes: partner discussion
  • “Ahora encuentren un compañero que haya restado de una forma diferente a la de ustedes. Discutan cómo razonaron” // “Now find a partner who subtracted the problem in a different way from you. Discuss your reasoning.”
  • 2–3 minutes: partner discussion
  • Repeat the discussion with 1-2 expressions or as many as time permits.

Student Facing

Usa la estrategia o el algoritmo que prefieras para encontrar el valor de cada diferencia. Muestra tu razonamiento. Organízalo para que los demás puedan entenderlo.

  1. \(451 - 329\)
  2. \(382 - 190\)
  3. \(924 - 285\)
  4. \(600 - 478\)
  5. \(505 - 417\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Invite 4–5 students share a strategy or algorithm they saw.
  • “¿Qué estrategias o algoritmos quieren practicar más?” // “What strategies or algorithms do you want to practice more?”

Activity 2: La mayor diferencia, la menor diferencia (15 minutes)

Narrative

The purpose of this activity is for students to play a game that enables them to practice using strategies and algorithms to subtract within 1,000. Students decide whether they will try to make the smallest or greatest difference, then spin a paper clip on a spinner to generate two three-digit numbers. Students use their choice of strategy or algorithm to subtract the numbers.

When students use place value to create a pair of numbers with a specific type of difference, they are looking for and making use of structure (MP7).

Required Materials

Materials to Gather

Materials to Copy

  • Greatest Difference, Smallest Difference

Required Preparation

  • Each group of 2 will need a paper clip.

Launch

  • Groups of 2
  • Give each group 1 copy of Greatest Difference, Smallest Difference.
  • “Tómense un momento para leer las instrucciones del juego con su pareja” // “Take a minute and read the directions to the game with your partner.”
  • 1 minute: partner work time
  • Play one round of the game against the class to illustrate how the game should be played.
  • “¿Tienen alguna pregunta sobre el juego?” // “Are there any questions about the game?”
  • Answer any questions students have about the game.

Activity

  • “Ahora jueguen el juego con su pareja por un rato” // “Now, take some time and play the game with your partner.”
  • 7–10 minutes: partner work time

Student Facing

  1. Decidan en pareja si quieren formar la mayor diferencia o la menor diferencia.
  2. Por turnos, hagan girar la ruleta y anoten un dígito en la posición de las centenas, las decenas o las unidades. Sigan hasta que sus números estén completos.
  3. Encuentren la diferencia.
  4. Comparen sus valores.
  5. Escriban una comparación usando un >, un <, o un =.
  6. Jueguen otra vez.
Spinner. 10 equal parts. Labeled 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Recording Sheet for Greatest Difference, Smallest Difference.

Recording Sheet for Greatest Difference, Smallest Difference.
Recording Sheet for Greatest Difference, Smallest Difference.
Recording Sheet for Greatest Difference, Smallest Difference.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • Display: 601 and 398
  • “Si estos fueran los números que ustedes formaron, ¿cómo encontrarían la diferencia y por qué?” // “If these were the numbers you made, how would you find the difference and why?” (Sample responses: I would count up because 398 is so close to 400. I would use an algorithm because I know that if I follow the steps it would work every time.)

Lesson Synthesis

Lesson Synthesis

“Hoy usamos estrategias para restar. ¿Cómo decidieron cuándo usar un algoritmo o una estrategia diferente?” // “Today we used strategies to subtract. How did you decide when to use an algorithm or another strategy?” (If the numbers were hard to subtract mentally, I'd use an algorithm. If they were close to a hundred, or if I saw a certain relationship between them that made it easy to work out mentally, then I'd use another strategy.)

Cool-down: ¿Un algoritmo u otra estrategia? (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.

Student Section Summary

Student Facing

En esta sección aprendimos algoritmos para restar números hasta 1,000. También aprendimos que, según los números que aparecen, podemos escoger usar un algoritmo u otra estrategia para restar.

Subtraction. Five-hundred plus thirty plus eight, minus one-hundred plus fifty plus six, equals three-hundred plus eighty plus two.

step 1Subtraction. Five-hundred thirty-eight minus one-hundred fifty-six equals two.
step 2Subtraction. Step two. Five-hundred thirty-eight minus one-hundred fifty-six equals two.
step 3Subtraction. Five-hundred thirty-eight minus one-hundred fifty-six equals eighty-two.
step 4Subtraction. Step four. Five-hundred thirty-eight minus one-hundred fifty-six equals three-hundred eighty-two.