Unit 2 Lesson 14: Solving Systems by Elimination (Part 1)

1 Notice and Wonder: Hanger Diagrams (Warm up)

Student Task Statement

What do you notice? What do you wonder?

2 Adding Equations

Student Task Statement

Diego is solving this system of equations:

$$\begin{cases} 4x + 3y = 10\\ -4x + 5y = 6 \end{cases}$$

Here is his work:

4x + 3y = 10	4x + 3(2) = 10
-4x + 5y = 6 +	4x + 6 = 10
0 + 8y = 16	4x = 4
y = 2	x = 1

- 1. Make sense of Diego's work and discuss with a partner:
 - a. What did Diego do to solve the system?
 - b. Is the pair of *x* and *y* values that Diego found actually a solution to the system? How do you know?
- 2. Does Diego's method work for solving these systems? Be prepared to explain or show your reasoning.

a.
$$\begin{cases} 2x + y = 4 \\ x - y = 11 \end{cases}$$
b.
$$\begin{cases} 8x + 11y = 37 \\ 8x + y = 7 \end{cases}$$

3 Adding and Subtracting Equations to Solve Systems

Student Task Statement

Here are three systems of equations you saw earlier.

System ASystem BSystem C $\begin{cases} 4x + 3y = 10 \\ -4x + 5y = 6 \end{cases}$ $\begin{cases} 2x + y = 4 \\ x - y = 11 \end{cases}$ $\begin{cases} 8x + 11y = 37 \\ 8x + y = 7 \end{cases}$

For each system:

- 1. Use graphing technology to graph the original two equations in the system. Then, identify the coordinates of the solution.
- 2. Find the sum or difference of the two original equations that would enable the system to be solved.
- 3. Graph the third equation on the same coordinate plane. Make an observation about the graph.