

## **Lesson 14 Practice Problems**

1. Solve each equation without using a calculator. Some solutions will need to be expressed using log notation.

a.  $4 \cdot 10^x = 400,000$ 

b.  $10^{(n+1)} = 1$ 

c.  $10^{3n} = 1,000,000$ 

d.  $10^p = 725$ 

e.  $6 \cdot 10^t = 360$ 

2. Solve  $\frac{1}{4} \cdot 10^{(d+2)} = 0.25$ . Show your reasoning.

3. Write two equations—one in logarithmic form and one in exponential form—that represent the statement: "the natural logarithm of 10 is y".

4. Explain why  $\ln 1 = 0$ .

5. If  $\log_{10}(x) = 6$ , what is the value of *x*? Explain how you know.

(From Unit 4, Lesson 9.)

- 6. For each logarithmic equation, write an equivalent equation in exponential form.
  - a.  $\log_2 16 = 4$ b.  $\log_3 9 = 2$ c.  $\log_5 5 = 1$ d.  $\log_{10} 20 = y$ e.  $\log_2 30 = y$

(From Unit 4, Lesson 10.)

- 7. The function *f* is given by  $f(x) = e^{0.07x}$ .
  - a. What is the continuous growth rate of f?
  - b. By what factor does f grow when the input x increases by 1?

(From Unit 4, Lesson 13.)