Lesson 14 Practice Problems

1. Solve each equation without using a calculator. Some solutions will need to be expressed using log notation.
a. $4 \cdot 10^{x}=400,000$
b. $10^{(n+1)}=1$
c. $10^{3 n}=1,000,000$
d. $10^{p}=725$
e. $6 \cdot 10^{t}=360$
2. Solve $\frac{1}{4} \cdot 10^{(d+2)}=0.25$. Show your reasoning.
3. Write two equations—one in logarithmic form and one in exponential form—that represent the statement: "the natural logarithm of 10 is y ".
4. Explain why $\ln 1=0$.
5. If $\log _{10}(x)=6$, what is the value of x ? Explain how you know.
(From Unit 4, Lesson 9.)
6. For each logarithmic equation, write an equivalent equation in exponential form.
a. $\log _{2} 16=4$
b. $\log _{3} 9=2$
c. $\log _{5} 5=1$
d. $\log _{10} 20=y$
e. $\log _{2} 30=y$
(From Unit 4, Lesson 10.)
7. The function f is given by $f(x)=e^{0.07 x}$.
a. What is the continuous growth rate of f ?
b. By what factor does f grow when the input x increases by 1 ?
