Lesson 11 Practice Problems

1. Select all expressions that are equal to $\log _{2} 8$.
A. $\log _{5} 20$
B. $\log _{5} 125$
C. $\log _{10} 100$
D. $\log _{10} 1,000$
E. $\log _{3} 27$
F. $\log _{10} 0.001$
2. Which expression has a greater value: $\log _{10} \frac{1}{100}$ or $\log _{2} \frac{1}{8}$? Explain how you know.
3. Andre says that $\log _{10}(55)=1.5$ because 55 is halfway between 10 and 100 . Do you agree with Andre? Explain your reasoning.
4. An exponential function is defined by $k(x)=15 \cdot 2^{x}$.
a. Show that when x increases from 1 to 1.25 and when it increases from 2.75 to 3 , the value of k grows by the same factor.
b. Show that when x increases from t to $t+0.25, k(t)$ also grows by this same factor.
(From Unit 4, Lesson 5.)
5. How many times does $\$ 1$ need to double in value to become $\$ 1,000,000$? Explain how you know.
(From Unit 4, Lesson 8.)
6. What values could replace the "?" in these equations to make them true?
a. $\log _{10} 10,000=$?
b. $\log _{10} 10,000,000=$?
c. $\log _{10} ?=5$
d. $\log _{10} ?=1$
(From Unit 4, Lesson 9.)
7. a. What value of t would make the equation $2^{t}=6$ true?
b. Between which two whole numbers is the value of $\log _{2} 6$? Explain how you know.
(From Unit 4, Lesson 10.)
8. For each exponential equation, write an equivalent equation in logarithmic form.
a. $3^{4}=81$
b. $10^{0}=1$
c. $4^{\frac{1}{2}}=2$
d. $2^{t}=5$
e. $m^{n}=C$
(From Unit 4, Lesson 10.)
