

Lesson 11 Practice Problems

1. Select all expressions that are equal to $\log_2 8.$

A. log₅ 20
B. log₅ 125
C. log₁₀ 100

- D. log₁₀ 1,000
- E. log₃ 27
- F. log₁₀ 0.001

2. Which expression has a greater value: $\log_{10} \frac{1}{100}$ or $\log_2 \frac{1}{8}$? Explain how you know.

3. Andre says that $log_{10}(55) = 1.5$ because 55 is halfway between 10 and 100. Do you agree with Andre? Explain your reasoning.

- 4. An exponential function is defined by $k(x) = 15 \cdot 2^x$.
 - a. Show that when x increases from 1 to 1.25 and when it increases from 2.75 to 3, the value of k grows by the same factor.
 - b. Show that when x increases from t to t + 0.25, k(t) also grows by this same factor.

(From Unit 4, Lesson 5.)

5. How many times does \$1 need to double in value to become \$1,000,000? Explain how you know.

(From Unit 4, Lesson 8.)

- 6. What values could replace the "?" in these equations to make them true?
 - a. $\log_{10} 10,000 = ?$
 - b. $\log_{10} 10,000,000 = ?$
 - c. \log_{10} ? = 5
 - d. \log_{10} ? = 1

(From Unit 4, Lesson 9.)

- 7. a. What value of *t* would make the equation $2^t = 6$ true?
 - b. Between which two whole numbers is the value of $\log_2 6?$ Explain how you know.

(From Unit 4, Lesson 10.)

- 8. For each exponential equation, write an equivalent equation in logarithmic form.
 - a. $3^4 = 81$ b. $10^0 = 1$ c. $4^{\frac{1}{2}} = 2$ d. $2^t = 5$ e. $m^n = C$

(From Unit 4, Lesson 10.)