Lesson 10 Practice Problems

1. a. Use the base-2 log table (printed in the lesson) to approximate the value of each exponential expression.
i. 2^{5}
ii. $2^{3.7}$
iii. $2^{4.25}$
b. Use the base-2 log table to find or approximate the value of each logarithm.
i. $\log _{2} 4$
ii. $\log _{2} 17$
iii. $\log _{2} 35$
2. Here is a logarithmic expression: $\log _{2} 64$.
a. How do we say the expression in words?
b. Explain in your own words what the expression means.
c. What is the value of this expression?
3. a. What is $\log _{10}(100)$? What about $\log _{100}(10)$?
b. What is $\log _{2}(4)$? What about $\log _{4}(2)$?
c. Express b as a power of a if $a^{2}=b$.
4. In order for an investment, which is increasing in value exponentially, to increase by a factor of 5 in 20 years, about what percent does it need to grow each year? Explain how you know.
(From Unit 4, Lesson 4.)
5. Here is the graph of the amount of a chemical remaining after it was first measured. The chemical decays exponentially.

What is the approximate half-life of the chemical? Explain how you know.
(From Unit 4, Lesson 7.)
6. Find each missing exponent.
a. $10^{?}=100$
b. $10^{?}=0.01$
c. $\left(\frac{1}{10}\right)^{?}=\frac{1}{1,000}$
d. $2^{?}=\frac{1}{2}$
e. $\left(\frac{1}{2}\right)^{?}=2$
(From Unit 4, Lesson 8.)
7. Explain why $\log _{10} 1=0$.

(From Unit 4, Lesson 9.)

8. How are the two equations $10^{2}=100$ and $\log _{10}(100)=2$ related?

(From Unit 4, Lesson 9.)

