

## **Lesson 13 Practice Problems**

- 1. The population of a town is growing exponentially and can be modeled by the equation  $f(t) = 42 \cdot e^{(0.015t)}$ . The population is measured in thousands, and time is measured in years since 1950.
  - a. What was the population of the town in 1950?
  - b. What is the approximate percent increase in the population each year?
  - c. According to this model, approximately what was the population in 1960?
- 2. The revenue of a technology company, in thousands of dollars, can be modeled with an exponential function whose starting value is \$395,000 where time t is measured in years after 2010.

Which function predicts exactly 1.2% of annual growth:  $R(t) = 395 \cdot e^{(0.012t)}$  or  $S(t) = 395 \cdot (1.012)^t$ ? Explain your reasoning.

3. How are the functions f and g given by  $f(x) = (1.05)^x$  and  $g(x) = e^{0.05x}$  similar? How are they different?



| 4.  | a. A bond is worth \$100 and grows in value by 4 percent each year. Explain why the value of the bond after $t$ years is given by $100 \cdot 1.04^t$ .                                                                                                                                           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | b. A second bond is worth \$100 and grows in value by 2 percent each half year. Explain why the value of the bond after $t$ years is given by $100 \cdot (1.02)^{2t}$ .                                                                                                                          |
|     | c. A third bond is worth \$100 and grows in value by 4 percent each year, but the interest is applied continuously, at every moment. The value of this bond after $t$ years is given by $100 \cdot e^{(0.04t)}$ . Order the bonds from slowest growing to fastest growing. Explain how you know. |
|     | ne population of a country is growing exponentially, doubling every 50 years. What the annual growth rate? Explain or show your reasoning.                                                                                                                                                       |
| -   | from Unit 4, Lesson 6.) hich expression has a greater value: $\log_3 \frac{1}{3}$ or $\log_b \frac{1}{b}$ ? Explain how you know.                                                                                                                                                                |
| (Fr | rom Unit 4, Lesson 11.)                                                                                                                                                                                                                                                                          |



- 7. The expression  $5 \cdot \left(\frac{1}{2}\right)^d$  models the amount of a radioactive substance, in nanograms, in a sample over time in decades, d. (1 nanogram is a billionth or  $1 \times 10^{-9}$  gram.)
  - a. What do the 5 and the  $\frac{1}{2}$  tell us in this situation?
  - b. When will the sample have less than 0.5 nanogram of the radioactive substance? Express your answer to the nearest half decade. Show your reasoning.
  - c. Show that only about 5 picograms of the substance will remain one century after the sample is measured. (A picogram is a trillionth or  $1 \times 10^{-12}$  gram.)

(From Unit 4, Lesson 7.)



- 8. Select **all** true statements about the number *e*.
  - A. *e* is a rational number.
  - B. e is approximately 2.718.
  - C. *e* is an irrational number.
  - D. e is between  $\pi$  and  $\sqrt{2}$  on the number line.
  - E. *e* is exactly 2.718.

(From Unit 4, Lesson 12.)