Unit 5 Lesson 3: Representing Exponential Growth

1 Math Talk: Exponent Rules (Warm up)

Student Task Statement

Rewrite each expression as a power of 2.

 $2^3 \cdot 2^4$

 $2^5 \cdot 2$

 $2^{10} \div 2^7$

 $2^9 \div 2$

2 What Does x^0 Mean? (Optional)

Student Task Statement

1. Complete the table. Take advantage of any patterns you notice.

х	4	3	2	1	0
3 ^x	81	27			

2. Here are some equations. Find the solution to each equation using what you know about exponent rules. Be prepared to explain your reasoning.

a.
$$9^? \cdot 9^7 = 9^7$$

b.
$$\frac{9^{12}}{9^?} = 9^{12}$$

3. What is the value of 5° ? What about 2° ?

3 Multiplying Microbes

Student Task Statement

- 1. In a biology lab, 500 bacteria reproduce by splitting. Every hour, on the hour, each bacterium splits into two bacteria.
 - a. Write an expression to show how to find the number of bacteria after each hour listed in the table.
 - b. Write an equation relating n, the number of bacteria, to t, the number of hours.
 - c. Use your equation to find *n* when *t* is 0. What does this value of *n* mean in this situation?

hour	number of bacteria
0	500
1	
2	
3	
6	
t	

2. In a different biology lab, a population of single-cell parasites also reproduces hourly. An equation which gives the number of parasites, p, after t hours is $p = 100 \cdot 3^t$. Explain what the numbers 100 and 3 mean in this situation.

4 Graphing the Microbes

Student Task Statement

- 1. Refer back to your work in the table of the previous task. Use that information and the given coordinate planes to graph the following:
 - a. Graph (t, n) when t is 0, 1, 2, 3, and 4.
- b. Graph (t, p) when t is 0, 1, 2, 3, and 4. (If you get stuck, you can create a table.)

- 2. On the graph of n, where can you see each number that appears in the equation?
- 3. On the graph of p, where can you see each number that appears in the equation?

Images for Activity Synthesis

