Lesson 1: Scale Drawings

- Let's make a scale drawing.

1.1: Is That the Same Hippo?

Original

A

B

Diego took a picture of a hippo and then edited it. Which is the distorted image? How can you tell?

Is there anything about the pictures you could measure to test whether there's been a distortion?

1.2: Sketching Stretching

A dilation with center O and positive scale factor r takes a point P along the ray $O P$ to another point whose distance is r times farther away from O than P is. If r is less than 1 then the new point is really closer to O, not farther away.

1. Dilate H using C as the center and a scale factor of $3 . H$ is 40 mm from C.

2. Dilate K using O as the center and a scale factor of $\frac{3}{4} . K$ is 40 mm from O.

1.3: Mini Me

1. Dilate the figure using center P and scale factor $\frac{1}{2}$.

2. What do you notice? What do you wonder?

Are you ready for more?

1. Dilate segment $A B$ using center P by scale factor $\frac{1}{2}$. Label the result $A^{\prime} B^{\prime}$.
2. Dilate the segment $A B$ using center Q by scale factor $\frac{1}{2}$.
3. How does the length of $A^{\prime \prime} B^{\prime \prime}$ compare to $A^{\prime} B$? How would the length of $A^{\prime \prime} B^{\prime \prime}$ change if Q was infinitely far away? Explain or show your answer.

Lesson 1 Summary

A scale drawing of an object is a drawing in which all lengths in the drawing correspond to lengths in the object by the same scale. When we scale a figure we need to be sure to scale all of the parts equally or else the image will become distorted.

Creating a scaled copy involves multiplying the lengths in the original figure by a scale factor. The scale factor is the factor by which every length in a original figure is multiplied when you make a scaled copy. A scale factor greater than 1 enlarges an object while a scale factor less than 1 shrinks an object. What would a scale factor equal to 1 do?

For example, segment $B C$ is a scaled copy of segment $D E$ with a scale factor of $\frac{1}{4}$. So $B C=\frac{1}{4} D E$. If $D E=6$, then $B C=\frac{6}{4}$ or 1.5.

To perform a dilation, we need a center of dilation, a scale factor, and something to dilate. A dilation with center A and positive scale factor k takes a point D along the ray $A D$ to another point whose distance is k times farther away from A than D is.

Segment $F G$ is a dilation of segment $D E$ using center A and a scale factor of 3 . So $F A=3 \cdot D A$. If $D A=15$, then $F A=45$.

