Lesson 5: The Pythagorean Identity (Part 1)

- Let's learn more about cosine and sine.

5.1: Circle Equations

Here is a circle centered at $(0,0)$ with a radius of 1 unit.

What are the exact coordinates of P if P is rotated counterclockwise $\frac{\pi}{3}$ radians from the point (1, 0)? Explain or show your reasoning.

5.2: Cosine, Sine, and the Unit Circle

What are the exact coordinates of point Q if it is rotated $\frac{2 \pi}{3}$ radians counterclockwise from the point (1, 0)? Explain or show your reasoning.

5.3: A New Identity

1. Is the point $\left(-0.5, \sin \left(\frac{4 \pi}{3}\right)\right)$ on the unit circle? Explain or show your reasoning.
2. Is the point $\left(-0.5, \sin \left(\frac{5 \pi}{6}\right)\right)$ on the unit circle? Explain or show your reasoning.
3. Suppose that $\sin (\theta)=-0.5$ and that θ is in quadrant 4 . What is the exact value of $\cos (\theta)$? Explain or show your reasoning.

Are you ready for more?

Show that if θ is an angle between 0 and 2π and neither $\cos (\theta)=0$ nor $\sin (\theta)=0$, then it is impossible for the sum of $\cos (\theta)$ and $\sin (\theta)$ to be equal to 1 .

Lesson 5 Summary

Let's say we have a point P with coordinates (a, b) on the unit circle, like the one shown here:

Using the Pythagorean Theorem, we know that $a^{2}+b^{2}=1$. We also know this is true using the equation for a circle with radius 1 unit, $x^{2}+y^{2}=1^{2}$, which is true for the point (a, b) since it is on the circle.

Another way to write the coordinates of P is using the angle θ, which gives the location of P on the unit circle relative to the point $(1,0)$. Thinking of P this way, its coordinates are $(\cos (\theta), \sin (\theta)$). Since $a=\cos (\theta)$ and $b=\sin (\theta)$, we can return to the Pythagorean Theorem and say that $\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$ is also true.

What if θ were a different angle and P wasn't in quadrant 1 ? It turns out that no matter the quadrant, the coordinates of any point on the unit circle given by an angle θ are $(\cos (\theta), \sin (\theta))$. In fact, the definitions of $\cos (\theta)$ and $\sin (\theta)$ are the x - and y-coordinates of the point on the unit circle θ radians counterclockwise from (1,0). Up until today, we've only been using the quadrant 1 values for cosine and sine to find side lengths of right triangles, which are always positive.

This revised definition of cosine and sine means that $\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$ is true for all values of θ defined on the unit circle and is known as the Pythagorean Identity.

