

Lesson 3 Practice Problems

- 1. Select **all** solutions to $m \cdot m \cdot m = 729$.
 - A. $\sqrt{729}$
 - B. $\frac{729}{3}$
 - C. $\frac{\sqrt{729}}{3}$
 - D. $\frac{1}{3}\sqrt{729}$
 - E. $729^{\frac{1}{3}}$
 - F. $\sqrt[3]{729}$
- 2. In a pond, the area that is covered by algae doubles each week. When the algae was first spotted, the area it covered was about 12.5 square meters.
 - a. Find the area, in square meters, covered by algae 10 days after it was spotted. Show your reasoning.
 - b. Explain why we can find the area covered by algae 1 day after it was spotted by multiplying 12.5 by $\sqrt[7]{2}$.

- 3. The function m, defined by $m(h) = 300 \cdot \left(\frac{3}{4}\right)^h$, represents the amount of a medicine, in milligrams, in a patient's body. h represents the number of hours after the medicine is administered.
 - a. What does m(0.5) represent in this situation?
 - b. This graph represents the function m. Use the graph to estimate m(0.5).

- c. Suppose the medicine is administered at noon. Use the graph to estimate the amount of medicine in the body at 4:30 p.m. on the same day.
- 4. The area covered by a lake is 11 square kilometers. It is decreasing exponentially at a rate of 2 percent each year and can be modeled by $A(t) = 11 \cdot (0.98)^t$.
 - a. By what factor does the area decrease in 10 years?
 - b. By what factor does the area decrease each month?
- 5. The third and fourth numbers in an exponential sequence are 100 and 500. What are the first and second numbers in this sequence?

(From Unit 4, Lesson 1.)

- 6. The population of a city in thousands is modeled by the function $f(t) = 250 \cdot (1.01)^t$ where t is the number of years after 1950. Which of the following are predicted by the model? Select **all** that apply.
 - A. The population in 1950 was 250.
 - B. The population in 1950 was 250,000.
 - C. The population grows by 1 percent each year.
 - D. The population in 1951 was 275,000.
 - E. The population grows exponentially.

(From Unit 4, Lesson 2.)