Unit 2 Lesson 19: End Behavior of Rational Functions

1 Different Divisions, Revisited (Warm up)

Student Task Statement

Complete all three representations of the polynomial division following the forms of the integer division.

250	$2x^2$		
11)2775	$(x+1)2x^3 + 7x^2 + 7x + 5$		
2200			
575			
550			
25			
22			
3			
2775 = 11(252) + 3	$2x^3 + 7x^2 + 7x + 5 =$		
$\frac{2775}{2} = 252 + \frac{3}{2}$	$\frac{2x^3 + 7x^2 + 7x + 5}{2x^3 + 7x^2 + 7x + 5} = 0$		
11 11 11	x + 1 -		

2 Combined Fuel Economy

Student Task Statement

In 2000, the Environmental Protection Agency (EPA) reported a combined fuel efficiency for cars that assumes 55% city driving and 45% highway driving. The expression for the combined fuel efficiency of a car that gets *x* mpg in the city and *h* mpg on the highway can be written as $\frac{100xh}{55x+45h}$.

- 1. Several conventional cars have a fuel economy for highway driving that is about 10 mpg higher than for city driving. That is, h = x + 10. Write a function f that represents the combined fuel efficiency for cars like these in terms of x.
- 2. Rewrite *f* in the form $q(x) + \frac{r(x)}{b(x)}$ where q(x), r(x), and b(x) are polynomials.

3 Exploring End Behavior

Student Task Statement

function	degree of num.	degree of den.	rewritten in the form of $q(x) + \frac{r(x)}{b(x)}$	end behavior
$g(x) = -\frac{5}{x+2}$				
$h(x) = \frac{7x-5}{x+2}$				
$j(x) = \frac{3x^2 + 7x - 5}{x + 2}$				
$k(x) = \frac{2x^3 + 3x^2 + 7x - 5}{x + 2}$				
$m(x) = \frac{x+2}{2x^3+3x^2+7x-5}$				

1. Complete the table to explore the end behavior for rational functions.

2. What do you notice about the end behavior of different types of rational functions?