## Unit 6 Lesson 18: The Volume and Dimensions of a Cylinder

## 1 A Circle's Dimensions (Warm up)

Student Task Statement


Here is a circle. Points $A, B, C$, and $D$ are drawn, as well as Segments $A D$ and $B C$.

1. What is the area of the circle, in square units? Select all that apply.
a. $4 \pi$
b. $\pi 8$
c. $16 \pi$
d. $\pi 4^{2}$
e. approximately 25
f. approximately 50
2. If the area of a circle is $49 \pi$ square units, what is its radius? Explain your reasoning.

## 2 Circular Volumes

## Student Task Statement

What is the volume of each figure, in cubic units? Even if you aren't sure, make a reasonable guess.
A
B
C


1. Figure $A$ : A rectangular prism whose base has an area of 16 square units and whose height is 3 units.
2. Figure B: A cylinder whose base has an area of $16 \pi$ square units and whose height is 1 unit.
3. Figure C: A cylinder whose base has an area of $16 \pi$ square units and whose height is 3 units.

## 3 What's the Dimension?

## Student Task Statement

The volume $V$ of a cylinder with radius $r$ is given by the formula $V=\pi r^{2} h$.

1. The volume of this cylinder with radius 5 units is $50 \pi$ cubic units. This statement is true:

$$
50 \pi=5^{2} \pi h
$$



What does the height of this cylinder have to be? Explain how you know.
2. The volume of this cylinder with height 4 units is $36 \pi$ cubic units. This statement is true: $36 \pi=r^{2} \pi 4$


What does the radius of this cylinder have to be? Explain how you know.

## 4 Cylinders with Unknown Dimensions

## Student Task Statement



Each row of the table has information about a particular cylinder. Complete the table with the missing dimensions.

| diameter <br> (units) | radius <br> (units) | area of the base (square <br> units) | height <br> (units) | volume (cubic <br> units) |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 3 |  | 5 |  |
| 12 |  |  | 11 | $108 \pi$ |
| 8 |  |  | 100 | $99 \pi$ |
|  |  |  |  | $16 \pi$ |
|  |  |  |  |  |
| 20 |  |  |  | $16 \pi$ |
|  |  |  |  | $20 \pi$ |
|  |  |  |  | 314 |
|  |  |  |  | $\pi \cdot b \cdot a^{2}$ |

