Unit 2 Lesson 16: Minimizing Surface Area

1 The Least Material (Warm up)

Student Task Statement

Here are four cylinders that have the same volume.

- 1. Which cylinder needs the least material to build?
- 2. What information would be useful to know to determine which cylinder takes the least material to build?

2 Figuring Out Cylinder Dimensions

Student Task Statement

There are many cylinders with volume 452 cm³. Let *r* represent the radius and *h* represent the height of these cylinders in centimeters.

1. Complete the table.

volume (cm ³)	radius (cm)	height (cm)
452	1	
452	2	
452	3	
452	4	
452	5	
452	6	
452	7	
452	8	
452	9	
452	10	
452	r	

- 2. Use graphing technology to plot the pairs (r, h) from the table on the coordinate plane.
- 3. What do you notice about the graph?

3 Calculating Surface Area

Student Task Statement

There are many cylinders with volume 452 cm³. Let *r* represent the radius of these cylinders, *h* represent the height, and *S* represent the surface area.

1. Use the table to explore how the value of *r* affects the surface area of the cylinder.

radius (cm)	height (cm)	surface area (cm ²)

- 2. Use graphing technology to plot the pairs (r, S) on the coordinate plane.
- 3. What do you notice about the graph?
- 4. Write an equation for *S* as a function of *r* when the volume of the cylinder is 452 cm³.