Unit 2 Lesson 15: The Remainder Theorem

1 Notice and Wonder: Division Leftovers (Warm up) Student Task Statement

What do you notice? What do you wonder?

33	82	66
10)330	4)330	5)330
300	320	300
30	10	30
30	8	30
0	2	0

A. $330 = 33(10) + 0$	B. $330 = 4(82) + 2$	C.330 = 5(66) + 0
-----------------------	----------------------	-------------------

2 The Unknown Coefficient

Student Task Statement

Consider the polynomial function $f(x) = x^4 - ux^3 + 24x^2 - 32x + 16$ where *u* is an unknown real number. If x - 2 is a factor, what is the value of *u*? Explain how you know.

3 A Study of Remainders

Student Task Statement

- 1. Which of these polynomials could have (x 2) as a factor?
 - a. $A(x) = 6x^2 7x 5$
 - b. $B(x) = 3x^2 + 15x 42$
 - c. $C(x) = 2x^3 + 13x^2 + 16x + 5$
 - d. $D(x) = 3x^3 2x^2 15x + 14$
 - e. $E(x) = 8x^4 41x^3 18x^2 + 101x + 70$
 - f. $F(x) = x^4 + 5x^3 27x^2 101x 70$
- 2. Select one of the polynomials that you said doesn't have (x 2) as a factor.
 - a. Explain how you know (x 2) is not a factor.
 - b. If you have not already done so, divide the polynomial by (x 2). What is the remainder?
- 3. List the remainders for each of the polynomials when divided by (x 2). How do these values compare to the value of the functions at x = 2?