Unit 2 Lesson 15: The Remainder Theorem
 1 Notice and Wonder: Division Leftovers (Warm up)
 Student Task Statement
 What do you notice? What do you wonder?

33
$1 0 \longdiv { 3 3 0 }$
82
$4 \longdiv { 3 3 0 }$
$5 \longdiv { 3 3 0 }$
300
320
300
30
10
30
$\frac{30}{0}$
$\frac{8}{2}$
$\frac{30}{0}$
A. $330=33(10)+0$
B. $330=4(82)+2$
C. $330=5(66)+0$

2 The Unknown Coefficient

Student Task Statement

Consider the polynomial function $f(x)=x^{4}-u x^{3}+24 x^{2}-32 x+16$ where u is an unknown real number. If $x-2$ is a factor, what is the value of u ? Explain how you know.

3 A Study of Remainders

Student Task Statement

1. Which of these polynomials could have $(x-2)$ as a factor?
a. $A(x)=6 x^{2}-7 x-5$
b. $B(x)=3 x^{2}+15 x-42$
c. $C(x)=2 x^{3}+13 x^{2}+16 x+5$
d. $D(x)=3 x^{3}-2 x^{2}-15 x+14$
e. $E(x)=8 x^{4}-41 x^{3}-18 x^{2}+101 x+70$
f. $F(x)=x^{4}+5 x^{3}-27 x^{2}-101 x-70$
2. Select one of the polynomials that you said doesn't have $(x-2)$ as a factor.
a. Explain how you know $(x-2)$ is not a factor.
b. If you have not already done so, divide the polynomial by $(x-2)$. What is the remainder?
3. List the remainders for each of the polynomials when divided by $(x-2)$. How do these values compare to the value of the functions at $x=2$?
