Unit 1 Lesson 11: Congruence

1 Translated Images (Warm up)

Student Task Statement

All of these triangles are congruent. Sometimes we can take one figure to another with a translation. Shade the triangles that are images of triangle $A B C$ under a translation.

2 Congruent Pairs

Student Task Statement

For each of the following pairs of shapes, decide whether or not they are congruent. Explain your reasoning.
1.

						y	y								

2.

					yA										
		G			H										
											R				
			A						B						
		$\stackrel{\sim}{K}$							T		S				
		J	d		'										x
									U						

3.

4.

5.

				${ }^{1 /}$	\uparrow					
								a		
								N		
								${ }_{B}$	${ }^{R}$	
		A						-		
			${ }_{H}$							

3 Corresponding Points in Congruent Figures

Student Task Statement

Here are two congruent shapes with some corresponding points labeled.

1. Draw the points corresponding to B, D, and E, and label them B^{\prime}, D^{\prime}, and E^{\prime}.
2. Draw line segments $A D$ and $A^{\prime} D^{\prime}$ and measure them. Do the same for segments $B C$ and $B^{\prime} C^{\prime}$ and for segments $A E$ and $A^{\prime} E^{\prime}$. What do you notice?
3. Do you think there could be a pair of corresponding segments with different lengths? Explain.
