Unit 5 Lesson 9: Scaling the Inputs

1 Out and Back (Warm up)

Student Task Statement

Every weekend, Elena takes a walk along the straight road in front of her house for 2 miles, then turns around and comes back home. Let's assume Elena walks at a constant speed.

Here is a graph of the function f that gives her distance f(t), in miles, from home as a function of time t if she walks 2 miles per hour.

- 1. Sketch a graph of the function g that gives her distance g(t), in miles, from home as a function of time t if she walks 4 miles per hour.
- 2. Write an equation for g in terms of f. Be prepared to explain why your equation makes sense.

2 A New Set of Wheels

Student Task Statement

Remember Clare on the Ferris wheel? In the table, we have the function F which gives her height F(t) above the ground, in feet, t seconds after starting her descent from the top. Today Clare tried out two new Ferris wheels.

- The first wheel is twice the height of F and rotates at the same speed. The function g gives Clare's height g(t), in feet, t seconds after starting her descent from the top.
- The second wheel is the same height as F but rotates at half the speed. The function h gives Clare's height h(t), in feet, t seconds after starting her descent from the top.

t	F(t)	g(t)	h(t)
0	212		
20	181		
40	106		
60	31		
80	0		

- 1. Complete the table for the function g.
- 2. Explain why there is not enough information to find the exact values for h(20) and h(60).
- 3. Complete as much of the table as you can for the function *h*, modeling Claire's height on the second Ferris wheel.
- 4. Express g and h in terms of f. Be prepared to explain your reasoning.

3 The Many Transformations of a Function P

Student Task Statement

Function k is a transformation of function P due to a scale factor.

- 1. Write an equation for k in terms of P.
- 2. On the same axes, graph the function *m* where m(x) = P(0.75x).
- 3. The highest point on the graph of *P* is (1, 2). What is the highest point on the graph of a function *n* where n(x) = P(5x)? Explain or show your reasoning.
- 4. The point furthest to the right on the graph of P is (4, 0). If the point furthest to the right on the graph of a function q is (18, 0), write a possible equation for q in terms of P.