Unit 2 Lesson 13: Polynomial Division (Part 2)

1 Notice and Wonder: Different Divisions (Warm up)

Student Task Statement

What do you notice? What do you wonder?
$1 1 \longdiv { 2 7 7 2 }$
$1 1 \longdiv { 2 5 }$
22
$1 1 \longdiv { 2 5 2 }$
22
57
$\frac{22}{5}$
$\begin{array}{r}57 \\ 55 \\ \hline 2\end{array}$
$\frac{55}{22}$
$\frac{22}{0}$

$$
\begin{gathered}
x + 1 \longdiv { 2 x ^ { 2 } } \\
\frac{-2 x^{3}+7 x^{2}+7 x+2}{5 x^{2}}+7 x
\end{gathered}
$$

2 Polynomial Long Division

Student Task Statement

1. Diego used the long division shown here to figure out that $6 x^{2}-7 x-5=(2 x+1)(3 x-5)$. Show what it would look like if he had used a diagram.

$$
\begin{array}{r}
2 x + 1 \longdiv { 6 x ^ { 2 } - 7 x - 5 } \\
\frac{-6 x^{2}-3 x}{-10 x}-5 \\
\underline{10 x+5}
\end{array}
$$

$2 x$	$6 x^{2}$	
1		

Pause here for a whole-class discussion.
2. $(x-2)$ is a factor of $2 x^{3}-7 x^{2}+x+10$, which means there is some other factor A where $2 x^{3}-7 x^{2}+x+10=(x-2)(A)$. Finish

$$
\begin{aligned}
& x-2 x^{2} \\
& \frac{-2 x^{3}+4 x^{2}}{2}
\end{aligned}
$$ the division started here to find the value of A.

3. Jada used the diagram shown here to figure out that $2 x^{3}+13 x^{2}+16 x+5=(2 x+1)\left(x^{2}+6 x+5\right)$. Show what it would look like if she had used long division.

	x^{2}	$6 x$	5
$2 x$	$2 x^{3}$	$12 x^{2}$	$10 x$
1	x^{2}	$6 x$	5

$$
2 x + 1 \longdiv { 2 x ^ { 3 } + 1 3 x ^ { 2 } + 1 6 x + 5 }
$$

3 More Long Division

Student Task Statement

Here are some polynomial functions with known factors. Rewrite each polynomial as a product of linear factors using long division.

$$
\begin{aligned}
& \text { 1. } A(x)=x^{3}-7 x^{2}-16 x+112,(x-7) \\
& \qquad x - 7 \longdiv { x ^ { 2 } - 7 x ^ { 2 } - 1 6 x + 1 1 2 } \\
& \quad \begin{array}{l}
-x^{3}+7 x^{2}
\end{array} \\
& \text { 2. } C(x)=x^{3}-3 x^{2}-13 x+15,(x+3)
\end{aligned}
$$

4 Missing Numbers (Optional)

Student Task Statement

Here are pairs of equivalent expressions, one in standard form and the other in factored form. Find the missing numbers.

1. $x^{2}+9 x+14$ and $(x+2)(x+\square)$
2. $x^{2}-9 x+20$ and $(x-\square)(x-\square)$
3. $2 x^{2}+2 x-24$ and $2(x+\square)(x-3)$
4. $\square x^{3}+11 x^{2}-17 x+6$ and $(-x+3)(2 x-1)(x-2)$
5. $6 x^{3}+2 x^{2}-16 x+8$ and $(x-1)(2 x+4)(\square x-2)$
6. $2 x^{3}+7 x^{2}-7 x-12$ and $(2 x-3)(x+\square)(x+\square)$
7. $x^{3}+6 x^{2}+\square x-10$ and $(x+2)(x-1)(x+\square)$
