Unit 2 Lesson 11: Finding Intersections

1 Math Talk: When f Meets g (Warm up)

Student Task Statement

Mentally identify a point where the graphs of the two functions intersect, if one exists.

$$
\begin{aligned}
& f(x)=x \text { and } g(x)=3 \\
& j(x)=(x+3)(x-3) \text { and } k(x)=0 \\
& m(x)=(x+3)(x-3) \text { and } n(x)=(x-3) \\
& p(x)=(x+5)(x-5) \text { and } q(x)=(x+3)(x-3)
\end{aligned}
$$

2 More Points of Intersection

Student Task Statement

For each pair of polynomials given, find all points of intersection of their graphs.

1. $c(x)=x^{2}-7$ and $d(x)=2$
2. $f(x)=(x+7)(x-4)$ and $g(x)=x-4$
3. $m(x)=(x+7)(x-4)$ and $n(x)=(2 x+5)(x-4)$
4. $p(x)=(x+1)(x-8)$ and $q(x)=(x+2)(x-4)$

3 Graphing to Find Points of Intersection

Student Task Statement

Consider the functions $p(x)=5 x^{3}+6 x^{2}+4 x$ and $q(x)=5640$.

1. Use graphing technology to find a value of x that makes $p(x)=q(x)$ true.
2. For the x-value at the point of intersection, what can you say about the value of $5 x^{3}+6 x^{2}+4 x-5640 ?$
3. What does your answer suggest is a possible factor of $5 x^{3}+6 x^{2}+4 x-5640$?
4. a. Write your own polynomial $m(x)$ of degree 3 or higher.
b. Use graphing technology to estimate the values of x that make $m(x)=q(x)$ true.
